Anleitung zur Bedienung des Statistik-Programms IBM© SPSS© Statistics Version 23

-Oktober 2019-

© IMBEI Mainz 2019

Inhalt

1. Die Benutzer-Oberfläche von IBM© SPSS© 23	1
1.1. Der Daten -Editor	1
1.2. Der Ausgabe-Viewer (das Ausgabe-Fenster)	2
1.3. Daten-Erweiterung und Daten-Auswahl	5
2. Spezielle Auswertungen mit SPSS	9
2.1. Bestimmung absoluter und relativer Häufigkeiten	9
2.2. Vierfeldertafeln, Exakter Fisher-Test, Chi-Quadrat-Unabhängigkeitstest	9
2.3. Statistische Maßzahlen für stetige Variablen	12
2.4. Boxplot	13
2.5. Der t-Test für unverbundene Stichproben	14
2.6. Unverbundener Wilcoxon-Test (Mann-Whitney-U-Test)	16
2.7. t-Test für verbundene Stichproben	16
2.8. Streudiagramm (Scatterplot)	19
2.9. Lineare Regression	20
2.10. Korrelations-Koeffizient nach Pearson	21
2.11. Partieller Korrelationskoeffizient	22
2.12. Logistische Regression	22
2.13. Analyse von Überlebenszeiten, KAPLAN-MEIER, Log-Rank-Test	26
2.14. Regression für zensierte Beobachtungen (Cox-Regression)	29
2.15. Bland-Altman-Plot	33
2.16. Карра-Маß	34
2.17. Einfaktorielle ANOVA	35
2.18. Kruskal-Wallis-Test	36
2.19. Friedman-Test	37

4. Beschreibung der in dieser Anleitung benutzten Datenmengen	
3.1. Datenmenge HDF.SAV	38
3.2. Datenmenge KARZINOM.SAV	38
3.3. Datenmenge SCHWIMMBADNUTZUNG.SAV	39
3.4. Datenmenge SPORT_LMK.SAV	39
3.5. Datenmenge VERDINUM.SAV	40
4. Index der wichtigsten Befehlsfolgen	41
5. Wegweiser zum Aufspüren von Kennzahlen der statistischen	
Auswertung in SPSS 23	43

1. <u>Die Benutzer-Oberfläche von SPSS</u>

SPSS ist ein statistisches Analyse-Paket. In diesem Programm arbeitet man normalerweise mit zwei Fenstern, dem <u>Daten-Editor-Fenster</u> und dem <u>Ausgabe-Fenster</u>. Für den Fenster-Wechsel ist jeweils der Menü-Befehl **Fenster** oder die Task-Leiste zu benutzen.

1.1. Der Daten -Editor

1.1.1. Aufbau des Daten-Editors

Der SPSS-Daten-Editor (auch "Daten-Fenster") ist in der <u>Datenansicht</u> für das Eingeben, Betrachten und Bearbeiten von Daten gedacht. Eingegebene Daten werden hier in tabellarischer Form dargestellt. Die Auswertung der Daten erfolgt normalerweise über Menübefehle und diese zugeordneten Dialogfelder.

In der ebenfalls tabellarischen <u>Variablenansicht</u> werden die Eigenschaften der Variablen festgelegt: der Name (kurzgehalten), Variablen-Typ (numerisch oder Datum oder Text), Anzahl der Zeichen und der Dezimalstellen, ein beschreibender Variablenname (Variablenname im Klartext) sowie Wertbezeichnungen (etwa "nein" für 0, "ja" für 1), sinnvoll nur bei kategorialen Variablen. Die restlichen Spalten der Variablenansicht werden nur selten benutzt und daher hier nichtberücksichtigt.

Spor_LM	K.sar [DataSet1]	IBM SPSS	Statist cs Date	eneditor				×
Datei l <u>e</u> ar	beiten Ansich	Daten Tr	ansformierer <u>A</u>	nalysieren D)irekt <u>m</u> arketir	n <u>e</u> Grafik Extra	as Fenster	Hilfe
							*	
: nr	1	190	•			Sichtba	ar: 6 von 6 Var	iable
	nr	geschl	gewicht	Strandur	groesse	sportart	var	
10	1190	0	80,44	0	1,88	1		
2	7041	0	84,36	0	1,92	1		
3	6209	0	84,15	0	1,93	1		
4	8578	0	89,31	0	1,98	1		
	1			222				
Datenansio	cht Variablena	insicht						
			IBM SPSS S	tatistics -Pro	zessor ist ber	eit Unic	ode:ON	

Der Daten-Editor (das Datenfenster) besteht aus folgenden Regionen:

Im <u>Zeilenkopf</u> steht die Nummer der Zeile. Im <u>Spaltenkopf</u> steht der Name der Variable. Die Zeilennummer der aktiven (markierten) Zelle sowie der dazugehörige Variablenname erscheinen im <u>Namenfeld</u>. Im <u>Zellen-Editor</u> kann man bei Bedarf Änderungen an dem Inhalt einer markierten Zelle vornehmen. Die <u>Symbolleiste</u> erlaubt den schnellen Zugriff auf häufig gebrauchte Kommandos. Über die Befehle der <u>Menüleiste</u> gelangt man in die verschiedensten Auswertungs-Optionen. Über die Registerzungen kann die Ansicht gewechselt werden.

1.1.2. Eine Datenmenge in den Daten-Editor laden

Nach dem Start von SPSS ist der Daten-Editor leer. Man kann nun entweder neue Daten eingeben oder eine bereits bestehende Datenmenge von der Festplatte in den Editor laden. Da man meist mehrere Sitzungen zur Auswertung derselben Datenmenge braucht, sei hier die Vorgehensweise des Ladens (des Öffnens) einer bereits bestehenden Datenmenge geschildert.

Menü-Befehlsfolge **Datei**, Öffnen, **Daten** ★ Dialogfeld *Daten öffnen*; darin wird die Liste der SPSS-Datenmengen dargestellt. Diese tragen immer die Dateinamen-Erweiterung .sav Nun muss man die gewünschte Datenmenge durch Mausklick links markieren und die Befehls-Schaltfläche Öffnen betätigen ★ Datenmenge erscheint im SPSS-Editor und ist bereit zur Auswertung.

1.2. Der Ausgabe-Viewer (das Ausgabe-Fenster)

1.2.1. Der Aufbau des Ausgabe-Viewers

Der Ausgabe-Viewer ist das Darstellungsmedium für Auswertungsergebnisse, die in Form von Tabellen, Statistiken und Diagrammen angezeigt werden. Dieses Fenster wird bei der ersten Auswertung der Daten automatisch geöffnet. Es besitzt ebenso wie der Daten-Editor sowohl eine Menü- als auch eine Symbolleiste. Die zur Verfügung stehenden Befehle unterscheiden sich teilweise von denen des Daten-Editors, da sie speziell dem Zweck der Bearbei-tung der Auswertungsergebnisse angepasst sind.

Die Darstellungszone ist durch eine senkrechte Rahmenleiste in zwei Flächen aufgeteilt. In der schmaleren, linken Hälfte ist eine Hierarchie der angezeigten Objekte (Tabellen, Statisti-ken, Diagramme) eingeblendet; in der breiteren, rechten Hälfte befinden sich diese Objekte selbst. Der Trennrahmen kann - mit gedrückter linker Maustaste - verschoben werden, damit man in der rechten Fensterhälfte mehr sieht. Hier ein verkleinertes Beispiel eines Ausgabe-Viewers:

Hierarchie der Objekte (Gliederungsrahmen)	Rahmentrenner		Erg	ebnis-Darstellur	g
Ausgabe2 [Dokument2] - IBM SPSS Sta	tistics Viewer	5.5	-		
Datei B <u>e</u> arbeiten Ansicht <u>D</u> aten <u>T</u> ran	sformieren E <u>i</u> nfügen F <u>o</u> rma	at <u>A</u> nalysiere	n Direkt <u>m</u> ark	etin <u>c G</u> rafik Ext	tras Fenster <u>H</u> ilfe
🔁 🖶 🖨 💆 🛛	🖳 🗠 🧃 📗	i 📰 📓		9	6 1
$+ + + - \parallel$					
Protokoll Häufigkeiten Titel Aktives Dataset Statistiken Geschlecht	Häufigkeiten [DataSet1] C:\VolD\: Statistiken Geschlecht N Gültig 4 Fehlend	SPSS_22_Sc 42 0 Ges	chlecht	\Sport_LMK.	sav
		Häufigkeit	Prozent	Gültige Prozent	Kumulative Prozente
	Gültig männlich	195	44,1	44,1	44,1
	weiblich	247	55,9	55,9	100,0
	Gesamtsumme	442	100,0	100,0	
1					1
		IBM SPSS	Statistics -Pr	ozessor ist berei	t Unicode:Of

1.2.2. Bedienung des Ausgabe-Viewers

1.2.2.1. Abspeichern des Inhaltes des Ausgabe-Viewers

Um den <u>gesamten</u> Inhalt des Ausgabe-Fensters speichern zu können, muss man sich im Ausgabe-Fenster befinden. Betätigen Sie die Befehlsfolge **Datei, Speichern unter** \checkmark Dialogfeld *Ausgabe Speichern unter*. In diesem Dialogfeld müssen Sie nur den verlangten Dateinamen (hier: user10) im Feld **Dateiname** eintragen und dann die Befehls-Schaltfläche **Speichern** betätigen. Hier der Zustand des Dialogfeldes unmittelbar vor dem Kommando **Speichern :**

ta Ausgabe speicher	n unter					×
Suchen in: <u>)</u> An	alyse	- 🖬	1		Ξ	
Dateiname:	Auswertung_1					<u>S</u> peichern
Speichern als Typ:	Viewer-Dateien (*.spv)				•	<u>E</u> infügen
	🔲 Datei sperren, um B	Bearbeitur	ng in Sr	nartre	eader zu verhindern	Abbrechen
	Datei mit Kennwort	verschlüs	seln			<u>H</u> ilfe
			Date <u>i</u> ir	n Rep	pository speichern	

HINWEISE:

- Der Datei-Typ ist *ViewerDatei* mit der Erweiterung **.spv**. In diesem Feld **Dateityp** sollte nichts verändert werden.
- Der unter Suchen in: abgebildete Name des Ordners bezieht sich auf ein Verzeichnis auf der Festplatte des Autorenrechners und ist nur als Beispiel zu verstehen. Alle SPSS-Nutzer sollten für Ihre Auswertung einen speziellen Ordner erstellen, der evtl. auch mit weiteren Unterordnern versehen werden kann.

1.2.2.2. Löschung von überflüssigen Objekten im Ausgabe-Viewer

Häufig kommt es vor, dass man mehr Objekte, als für die Lösung der jeweiligen Aufgabe notwendig ist, im Ausgabe-Fenster stehen hat. Der Grund dafür kann etwa sein, dass man einen Auswertungsbefehl doppelt gegeben oder die falsche Variable benutzt hat oder etwas ausprobierte, das nicht zum gewünschten Ergebnis führte. In diesen Fällen sollten alle überflüssigen Objekte aus dem Ausgabe-Fenster weggelöscht werden, bevor der gesamte Fenster-Inhalt als Datei gespeichert wird.

Unter der Annahme, dass das Objekt "Explorative Datenanalyse" in dem Ausgabe-Fenster überflüssig sei, hier ein Beispiel für die Verfahrensweise beim Löschen einzelner Objekte aus dem Ergebnis-Fenster: Man markiere die zu löschenden Objekte in der Hierarchiedarstellung der linken Fensterseite. Sodann ist die Befehlsfolge **Bearbeiten, Löschen** zu betätigen 🖈 die markierten Objekte sind aus dem Ausgabe-Fenster gelöscht. Hier eine kleine exemplarische Darstellung:

Zum Löschen markiert	und gelöscht
Ausgabe Ausgabe Protokoll Haufigkeiten Statistiken Geschlecht Protokoll Fe Explorative Datenanalyse Titel Fill Titel Geschlecht Fill Deschlecht Geschlecht Geschlecht	 ■ E Ausgabe ■ Protokoll ■ Häufigkeiten ■ Titel ■ Hinweise ■ Statistiken > ■ Geschlecht

Wenn die Ausgabe den erforderlichen Umfang aufweist, kann sie wie unter 1.2.2.1 mit dem vorgesehenen Namen abgespeichert werden.

1.2.2.3. Bearbeiten von Grafiken

Diagramme, also Grafiken zur Veranschaulichung von Verteilungen und Verläufen, werden ebenfalls als Objekte im Ausgabe-Viewer dargestellt. SPSS hat für jede Grafikform einen eigenen Darstellungs-Standard. Wenn man damit nicht zufrieden ist - seine Grafik etwa noch mit einem erklärenden Titel versehen oder Farben ändern will - so muss diese Grafik nochmal "von Hand" nachbearbeitet werden, dies natürlich ebenfalls im SPSS-Viewer. Dafür ist <u>mitten in die Grafik</u> ein **Doppelklick** mit linker Maustaste durchzuführen. Es öffnet sich der SPSS-Diagramm-Editor, w elcher seinerseits in einem eigenen Fenster ausgeführt wird. Auch das Diagramm-Editor-Fenster besitzt in seiner Menüleiste eigene, auf die Zwecke der Grafik- Bearbeitung ausgerichtete Befehle. Eine SPSS-Grafik besteht aus einzelnen Objekten -Boxen, Linien, Achsen, Achsenbeschriftungsfeldern etc. <u>Vor seiner Bearbeitung ist das jeweilige Objekt mit Einfachklick links zu **markieren**. Hier die wichtigsten Befehlsfolgen zur Bearbeitung markierter Objekte:</u>

Bearbeiten, Eigenschaften	Öffnet das Dialogfeld <i>Eigenschaften</i> des jeweils markierten Objekts
Optionen	Ermöglicht das Einfügen von
	- Bezugslinien für X - / Y - Achse - Textfeldern - Rastern (Gitternetzlinien)
Zur zügigen Bearbeitung von markierten O Benutzung des Kontext-Menüs mit der rech	bjekten im Diagramm-Fenster kann auch die nten Maustaste empfohlen werden.

Einige Modifikationsbefehle für Diagramme sind auch über die Symbolleiste des Diagramm-Editors - markierungsabhängig - erreichbar:

1.3. Daten-Erweiterung und Daten-Auswahl

1.3.1. Eine neue Variable erzeugen, deren Ausprägungen eingetragen werden müssen

Bei der Erstellung einer Daten-Tabelle erfolgt zunächst die Variablen-Definition in der <u>Variablenansicht</u> des Daten-Editors. Danach erfolgt die Dateneingabe der <u>Datenansicht</u> Daten-Editors. Es ist aber darüber hinaus nützlich zu wissen, wie bei Bedarf nachträglich eine neue Variable hinzugefügt werden kann.

Die Erzeugung einer neuen Variablen wird in der Tabelle <u>Variablenansicht</u> des Dateneditors vollzogen. Die Angaben zur neuen Variablen müssen in dieser Tabelle in eine eigene Zeile - denn jede Variable belegt in der Variablenansicht eine eigene Zeile - eingetragen werden. In dieser Zeile wären auch bei Bedarf in den entsprechenden Zellen die Anzahl der Dezimalstellen wie auch Variablenbezeichnung (verständlicher Klarname der Variablen) und Wertebezeichnungen (Benennung der Ausprägungen einer kategorialen Variablen) zu vereinbaren.

Für die Positionierung der neuen Variablen gibt es zwei Möglichkeiten: 1) Sie wird in die nächste freie Zeile der Variablenliste eingetragen, also unten <u>angeschlossen</u>. In der Datenansicht erscheint sie dann in der letzten Spalte. 2) Sie wird, weil von der Reihenfolge in der Datenansicht her vielleicht praktischer, an geeigneter Stelle in die Liste <u>eingefügt</u>. Dafür ist der Zeilenkopf derjenigen Variablen mit rechts anzuklicken, vor welcher die neue Variable eingefügt werden soll, gefolgt vom Kommando **Variable einfügen**. In der <u>Datenansicht</u> sind dann die Ausprägungen in die Spalte der neuen Variablen Zelle für Zelle einzutragen.

1.3.2. Neue Variable aus bestehenden Werten errechnen lassen: Kategorisieren einer stetigen Variablen

Hier verwendete Datenmenge: SPORT_LMK.SAV

Die Befehlsfolge **Transformieren, Umkodieren in andere Variablen** führt in das Dialogfeld *Umkodieren in andere Variablen*. Aus der Variablenliste ist die Eingabevariable auszuwählen und mit der Schaltfläche **Übernehmen** in das Feld **Numerische Var.-> Ausgabevar**. einzusteuern:

Variablenliste	Übernehn	ien	Namenfeld für neue Variabl
Umcodieren in andere V	ariablen		×
 ✓ nr ➢ geschi ➢ Strandur ✓ groesse ➢ sportart 	ę	Numerische <u>V</u> ar> Ausgabevar.: gewicht> ?	Ausgabevariab Name: gew_Klasse • Beschriftung: Ändern
		Alte und neue Werte Falls (optionale Fallauswahlbedingung)	

Nach der Eingabe des neuen Variablennamens muss unter Alte und neue Werte die stetige Quellvariable kategorial umkodiert werden. Weiter führt zurück in den Dialog *Umkodieren in andere Variablen*. Hier muss die Umkodierung durch Ändern abgeschlossen werden. Mit OK wird die neue Variable Bestandteil der Datentabelle.

1.3.3 Eine neue Variable aus einer alten Variablen berechnen

Hier verwendete Datenmenge:	SPORT_LMK.SAV
Hier verwendete Variable:	GROESSE

<u>Beispiel:</u> logarithmische Transformation

Die Befehlsfolge **Transformieren, Variable berechnen** ★ Dialogfeld *Variable berechnen.* In das Feld **Zielvariable** ist der Name der neuen Variablen einzutragen: log_groe. Im Feld Funktionsgruppe **Alle** aktivieren; im Feld **Funktionen** muss die Option **LN** markiert und mittels des Schalters Übernehmen in das Feld **Numerischer Ausdruck** eingesteuert werden. Anstelle des Fragezeichens zwischen den Klammern muss der Originalname der Quell-Variablen eingetragen werden, wie unten ersichtlich:

Variable berechnen	Funktion übernehm	en
Zielvariable: log_groe Typ & Beschriftung nr geschl gewicht Strandur groesse sportart	Image: Numerischer Ausdruck: Image: LN(groesse) Image: LN(groesse)	Funktionsgruppe: Alle Arithmetisch Verteilungsfunktionen Umwandlung Aktuelles Datum/aktuelle Uhrze Datumsarithmetik Potumeesstellung funktionen und Sondervariablen: Idf.Srange Idf.T Idf.Uniform Idf.Weibull Lag(1) Lag(2) Length Idf.0
Falls (optionale Fallaus	wahlbedingung)	Ln Lngamma Lower
	OK Einfügen Zurücksetzen Abbrechen	Hilfe

Wenn das Dialogfeld die obige Gestalt besitzt, kann die Transformation mit **OK** ausgeführt werden. SPSS erzeugt nun eine neue Variable des Namens log_groe für den logarithmierten Inhalt der Quell-Variablen groesse.

	nr	geschl	gewicht	Strandur	groesse	sportart	log_groe	
1	1190	0	80,44	0	1,88	1	,63	
2	7041	0	84,36	0	1,92	1	,65	
3	6209	0	84,15	0	1,93	1	,66	-
	4							

1.3.4. Datei aufteilen

Hier verwendete Datenmenge:

SPORT_LMK.SAV

4

In dieser Datenmenge wurden sowohl Sportlerinnen als auch Sportler erfasst. Das jeweilige Geschlecht der Probanden wurde im Merkmal *geschl* aufgenommen, das jeweilige Gewicht im Merkmal *gewicht*. Um z. B. die Quartile für das Merkmal *gewicht* getrennt nach dem Geschlecht der ProbandInnen ausgeben zu lassen, wird die Datenmenge in SPSS in zwei Gruppen aufgeteilt, und zwar gemäß den Ausprägungen im Merkmal *geschl* (0 oder 1).

Befehlsfolge: Daten, Aufgeteilte Datei 🖈 Dialogfeld *Datei aufteilen*. Dort ist die Option Ausgabe nach Gruppen aufteilen zu aktivieren und die Gruppierungs-Variable, also geschl,

in der Variablenliste zu markieren. Durch Klick auf die Schaltfläche Übernehmen wird die Variable in das Feld Gruppen basierend auf aufgenommen:

🔚 Datei aufteilen	×				
<pre></pre>	 Alle Fälle analysieren, keine Gruppen bilden Gruppen vergleichen Ausgabe nach Gruppen aufteilen Gruppen basierend auf: geschl Datei nach Gruppierungsvariablen sortieren Datei ist sortiert 				
Aktueller Status: Gruppenweise Analyse inaktiviert.					

Nach **OK** wird jede nun durchgeführte Auswertung nach Gruppen getrennt durchgeführt, so auch z. B. die Berechnung der Quartile für die Variable *gewicht*:

Statistiken

Gewicht			
männlich	Ν	Gültig	195
		Fehlend	0
	Perzentile	25	84,3617
		50	90,4219
		75	95,7461
weiblich	N	Gültig	247
		Fehlend	0
	Perzentile	25	66,7276
		50	70,8234
		75	78,5279

HINWEIS: die Datei-Aufteilung nach Gruppen kann rückgängig gemacht werden mit der Befehlsfolge **Daten, Aufgeteilte Datei, Alle Fälle analysieren, keine Gruppen bilden, OK**. Ansonsten wird die Datei-Aufteilung beibehalten!

1.3.5. Fälle auswählen: ein Subkollektiv definieren

Hier verwendete Datenmenge:	SPORT_LMK.SAV
Hier verwendetes Subkollektiv:	SPORTART=2 & geschl =1

Will man nur Statistiken für eine bestimmte Untergruppe der gesamten Datenmenge berechnet haben - in diesem Beispiel sollen nur die Mannschaftssportlerinnen bei der Auswertung berücksichtigt werden - so kann das entsprechende Dialogfeld *Fälle auswählen* mit der Befehlsfolge **Daten, Fälle auswählen** aufgerufen werden. Daselbst ist die Option **Falls Bedingung zutrifft** und daraufhin die Schaltfläche **Falls** zu betätigen. Es öffnet sich das untergeordnete Dialogfeld *Fälle auswählen: Falls*, das mit etwas Übung ausschließlich mit der Maus bedient werden kann. Die erforderlichen Einträge können aber auch getippt werden. Wenn, wie im vorliegenden Falle, mehr als eine Variable mit einschränkender Bedingung ausgewählt werden muss, so sind diese Bedingungen mit dem Zeichen & bzw. "and" zu verketten. Wie auch immer für die Auswahl des Subkollektivs der Mannschaftssportlerinnen vorgegangen wird, ob mit Mausklick auf die Schaltflächen oder durch Eintragung der Bedingungen über die Tastatur, zuletzt muss das Dialogfeld die folgende Gestalt besitzen:

Nach Betätigung von Weiter gelangt man wieder in das übergeordnete Dialogfeld *Fälle auswählen*, wo die Auswahl mit **OK** zu bestätigen ist.

	nr	geschl	gewicht	Strandur	groesse	sportart	log_groe	
335	10755	1	83,78	1	1,90	2	,64	4
336	10420	1	87,21	1	1,90	2	,64	
	6538	0	80,10	0	1,73	3	,55	-
	4							

SPSS hat nun eine dichotome "Filter"-Variable namens *filter_\$* erzeugt, die nur die Ausprägungen 1 (ausgewählt) und 0 (nicht ausgewählt) beinhaltet. -

HINWEIS: Die Befehlsfolge **Daten, Fälle auswählen, Alle Fälle, [OK]** hebt die getroffene Auswahl wieder auf.

2. Spezielle Auswertungen mit SPSS

2.1. Bestimmung absoluter und relativer Häufigkeiten

Hier verwendete Datenmenge:	VERDINUM.SAV
Hier verwendete Variablen:	THER("Behandlung"),
	RESP8 ("Therapie-Erfolg nach 8 Wochen")

Die Befehlsfolge **Analysieren, Deskriptive Statistiken, Häufigkeiten** führt in das Dialogfeld *Häufigkeiten*. Dort sind in das Feld **Variablen** die beiden interessierenden Merkmale einzutragen. Mit **OK** wird folgender Output erzeugt:

Häufigkeiten

Statistiken

		Behandlung	Therapieerfolg nach 8 Wochen
N	Gültig	369	353
	Fehlend	0	16

Häufigkeitstabelle

Behandlung

		Häufigkeit	Prozent	Gültige Prozent	Kumulative Prozente
Gültig	Hydrochlorothiazid	187	50,7	50,7	50,7
	Verapamil	182	49,3	49,3	100,0
	Gesamtsumme	369	100,0	100,0	

Therapieerfolg nach 8 Wochen

		Häufigkeit	Prozent	Gültige Prozent	Kumulative Prozente
Gültig	nein	176	47,7	49,9	49,9
	ja	177	48,0	50,1	100,0
	Gesamtsumme	353	95,7	100,0	
Fehlend	System	16	4,3		
Gesamts	umme	369	100,0		

Häufigkeit:absolute HäufigkeitenProzent:relative Häufigkeiten, wenn Fehlwerte nicht ausgeschlossen werdenGültige Prozente:relative Häufigkeiten, wenn Fehlwerte ausgeschlossen werden

2.2. Vierfeldertafeln, Exakter Fisher-Test, Chi-Quadrat-Unabhängigkeitstest

Hier verwendete Datenmenge:	VERDINUM.SAV
Hier verwendetes Subkollektiv:	alter < 45 Jahre
Hier verwendete Variable:	Einflussgröße THER ("Therapie"),
	Zielgröße RESP8 ("Therapie-Erfolg nach
	8 Wochen).

Zur Durchführung des exakten Fisher-Tests ist zunächst folgende Befehlsfolge abzusetzen: Analysieren, Deskriptive Statistiken, Kreuztabellen \checkmark Dialogfeld *Kreuztabellen*. Dort ist die Einflussgröße *ther* als Zeilenvariable in das Feld Zeilen: und die Zielgröße *resp8* als Spaltenvariable in das Feld Spalten: einzutragen. - Zur Ausgabe des exakten Fisher-Tests ist an dieser Stelle die Schaltfläche Statistiken anzuklicken \bigstar Dialogfeld *Kreuztabellen: Statistik*. Dort ist die Optionen Chi-Quadrat zu aktivieren. Falls sinnvoll, können an dieser Stelle auch noch das Relative Risiko oder das Kappa-Maß oder der McNemar-Test aufgerufen werden:

ta Kreuztabellen: Statistik	×				
Chi-Quadrat	Ko <u>r</u> relationen				
Nominal	Ordinal				
Kontingenzkoeffizient	🔲 <u>G</u> amma				
Phi und Cramer-V	Somers-d				
🔲 Lambda	🔲 Kendall-Tau- <u>b</u>				
Unsicherheitskoeffizient	🔲 Kendall-Tau- <u>c</u>				
Nominal bezüglich Intervall	🔲 <u>K</u> appa				
🔲 <u>E</u> ta	🔲 R <u>i</u> siko				
	McNemar				
Cochran- und Mantel-Haenszel-Statistik					
Gemeinsames Odds-Verhäl <u>t</u> nis: 1					
Weiter	en Hilfe				

Danach ist die Schaltfläche Weiter zu betätigen:

Im übergeordneten Dialogfeld *Kreuztabellen* muss noch die Schaltfläche **Zellen** angeklickt werden \checkmark Dialogfeld *Kreuztabellen: Zellen anzeigen.* Hier wird die Ausgabe von Zeilenprozenten angefordert durch Aktivierung der Option **Prozentwerte: Zeilenweise**. Wenn das Dialogfeld die folgende Gestalt besitzt, kann **Weiter** gegeben werden:

Kreuztabellen: Zellen anzeigen		x
_ Häufigkeiten]	
Beobachtet		
Erwartet		
🔲 Kleine Werte für <u>H</u> äufigkeiten ausblenden		
Kleiner als 5		
Prozentwerte	- Residuen	
Gesam <u>i</u> summe	Angepasst standardisiert	

Zurück im übergeordneten Dialogfeld *Kreuztabellen* kann nun, da alle erforderlichen Einstellungen vollzogen sind, **OK** gegeben werden. Sodann erscheint dieser Output:

Verarbeitete Fälle

		Fälle					
	Gü	ltig	Fehlend		Gesamt		
	Ν	Prozent	Ν	Prozent	Ν	Prozent	
Behandlung * Therapieerfolg nach 8 Wochen	100	96,2%	4	3,8%	104	100,0%	

<u>Erläuterung zur Tabelle Verarbeitete Fälle:</u> Bei 4 Von 104 Patienten konnte keine Untersuchung der Response nach 8 Wochen durchgeführt werden. Somit ergibt sich eine effektive Fallzahl von 100 Patienten, für die der exakte Fisher-Text und der Risikoschätzer berechnet werden können.

Behandlung *	* Therapieerfolg nach	8 Wochen	Kreuztabelle
Domananang	interapteering maen	0 11 0 0 11 0 11	

			Therapieerf Woo	olg nach 8 hen	
			nein	ja	Gesamt
Behandlung	Hydrochlorothiazid	Anzahl	36	19	55
		% v on Behandlung	65,5%	34,5%	100,0%
	Verapamil	Anzahl	23	22	45
		% v on Behandlung	51,1%	48,9%	100,0%
Gesamt		Anzahl	59	41	100
		% v on Behandlung	59,0%	41,0%	100,0%

<u>Erläuterung zur Kreuztabelle:</u> hier sind zwei Häufigkeitsarten zu finden: die absolute Häufigkeit in den Zeilen "Anzahl" und die relative Häufigkeit in Prozent in den Zeilen "% von Behandlung". Von 55 Patienten, die mit Hydrochlorothiazid behandelt wurden, hatten also 19 (35%) eine Response nach 8 Wochen, verglichen mit 22 von 45 (49%) der mit Verapamil behandelten Patienten.

	Wert	df	Asymptotisch e Signifikanz (2-seitig)	Exakte Signifikanz (2-seitig)	Exakte Signifikanz (1-seitig)
Chi-Quadrat nach Pearson	2,105 ^b	1	,147		
Kontinuitätskorrekt ur ^a	1,554	1	,213		
Likelihood-Quotient	2,106	1	,147		
Exakter Test nach Fisher				,159	,106
Zusammenhang linear-mit-linear	2,084	1	,149		
Anzahl der gültigen Fälle	100				

Chi-Quadrat-Tests

a. Wird nur für eine 2x2-Tabelle berechnet

b. 0 Zellen (,0%) haben eine erwartete Häufigkeit kleiner 5. Die minimale erwartete Häufigkeit ist 18,45.

Erläuterung zur Tabelle *Chi-Quadrat-Tests*: In diesem Zusammenhang ist die Zeile *exakter Test nach Fisher* wichtig. In der Spalte *Exakte Signifikanz* (2-*seitig*) ist der zweiseitige p-Wert mit 0,159 größer als das vorgegebene Signifikanzniveau von 0,05. Damit kann man auf keinen Unterschied der Responderraten schließen.

2.3. Statistische Maßzahlen für stetige Variablen

Hier verwendete Datenmenge:	SPORT_LMK
Hier verwendetes Subkollektiv:	SPORTART=2 & geschl =1
Hier verwendete Variable:	GROESSE (Körpergröße in Meter)

Zunächst ist die Befehlsfolge **Analysieren, Deskriptive Statistiken, Häufigkeiten** zu aktivieren. Im daraufhin erscheinenden Dialogfeld *Häufigkeiten* ist die interessierende Variable in der Liste auszuwählen und in das Feld **Variable(n)** zu übernehmen. Aus Platzgründen soll keine Häufigkeitstabelle ausgegeben werden, deshalb ist die Option **Häufigkeitstabellen anzeigen** mit Mausklick zu deaktivieren. Die Schaltfläche **Statistik** führt in folgendes Auswahl-Dialogfeld, wo die gewünschten Maßzahlen wie folgend dargestellt zu markieren sind:

Häufigkeiten: Statistik		X
Perzentilwerte		Lagemaße
Quartile		Mittelwert
Trennwerte für: 10	gleiche Gruppen	✓ Median
Perzentile:		Modalwert
Hinzufügen		Summe Summe
Ändern		
Entforman		
Entremen		
		Werte sind Gruppenmittelpunkte
Streuung		Verteilung
Standardabweichur	ng 👿 Minimum	Schiefe
Varianz	🔽 Ma <u>x</u> imum	🔲 <u>K</u> urtosis
Bereich	Standardf <u>e</u> hler Mittelwert	
	Weiter	Hilfe

Nach Betätigung von **Weiter** gelangt man wieder in das übergeordnete Dialogfeld *Häufigkeiten*, wo entweder über die Schaltfläche **Diagramme** eine graphische Darstellung oder aber, falls dies nicht gewünscht ist, durch Betätigung von **OK**, die Ausgabe der Maßzahlen an- gefordert werden kann:

Statistiken

Körpergröße	9	
N	Gültig	120
	Fehlend	0
Mittelwert		1,7726
Median		1,7845
Standardaby	weichung	,08177
Varianz	2240	,007
Schiefe		-,138
Standardfeh	ler der Schiefe	,221
Bereich		,27
Minimum		1,63
Maximum		1,90
Perzentile	25	1,6994
	50	1,7845
	75	1,8455

2.4. Boxplot

Hier verwendete Datenmenge: Hier verwendete Variablen: SPORT_LMK.SAV GROESSE (Körpergröße in Meter), GESCHL (Geschlecht)

Zur optischen Visualisierung der Verteilung einer Variablen kann auch in diesem Zusammenhang der Grafiktyp Boxplot beitragen. Eine solche Grafik wird wie folgt erzeugt: Befehls- folge Grafik, Veraltete Dialogfelder, Boxplot \bigstar es öffnet sich das Dialogfeld *Boxplot*:

Man möchte nun die Verteilung einer stetigen Variablen aufgeteilt nach dem Inhalt einer qualitativ-nominalen Variablen kennenlernen: **Einfach, Definieren** Dialogfeld *Einfachen Boxplot definieren: Auswertung über Kategorien einer Variablen* (Ausschnitt):

):

Als aufzutragende Variable wurde in diesem Beispiel *groesse* und als Einteilungsvariable *geschl* gewählt. Auf **OK** hin erzeugt SPSS die Grafik, welche noch bearbeitet werden kann (Farbe, Beschriftung, evtl. Skalierung):

2.5. Der t-Test für unverbundene Stichproben

Hier verwendete Datenmenge: Hier verwendete Subkollektive: Hier verwendete Variable: VERDINUM.SAV Behandlung mit HCT oder mit VER DIAST0 ("Diastolischer Blutdruck bei Behandlungsbeginn")

Zum Mittelwertvergleich mit Hilfe des t-Tests für unverbundene Stichproben ist folgendermaßen vorzugehen: Analysieren, Mittelwerte vergleichen, T-Test bei unabhängigen Stichproben A Dialogfeld *T-Test bei unabhängigen Stichproben*. In das Feld **Testvariable**(n) ist die interessierende Variable, hier *diast0*, einzutragen. In das Feld **Gruppenvariable** muss diejenige Variable eingetragen werden, in welcher die Medikation für jeden Patienten vermerkt ist: *ther*. SPSS verlangt hier nochmals die Angabe der Ausprägungen in der Gruppenvariable. Deshalb ist an dieser Stelle die Schaltfläche **Gruppen definieren** zu betätigen. Die beiden Gruppen wären folgendermaßen festzulegen:

Gruppen defin	ieren		x	
Angegebene	Werte <u>v</u> er	wenden		
Gruppe <u>1</u> :	0			
Gruppe Z.	9			(Ausschnitt)

Dann ist die Schaltfläche **Weiter** zu betätigen. Im übergeordneten Dialogfeld *T-Test bei unabhängigen Stichproben* kann, falls dies gewünscht wird, noch mit der Schaltfläche **Optionen**

ein Dialogfeld aufgerufen werden, das die Veränderung des Konfidenzintervalls z. B. von 95% auf 99% erlaubt (nur bei Bedarf umstellen, ansonsten bei 95% belassen):

Nach **Weiter** und **OK** im übergeordneten Dialogfeld *T-Test bei unabhängigen Stichproben* erzeugt SPSS folgenden Output:

Gruppenstatistik

	Behandlung	Ĥ	Mittelwert	Standardab weichung	Standardfehler Mittelwert
Diast. Blutdruck bei	Hydrochlorothiazid	187	104,43	6,364	,465
Behandlungsbeginn	Verapamil	182	104,25	6,079	,451

<u>Erläuterungen zur Tabelle *Gruppenstatistiken*:</u> Sie enthält für die Variable diast0 getrennt für die Gruppen "Hydrochlorothiazid" und "Verapamil" die Werte für den Stichprobenumfang (H), für den arithmetischen Mittelwert, die empirische Standardabweichung und den Standardfehler des Mittelwertes.

	rest ber unabilangigen Suchip oben								
	Levene-1 Varianzg	Fest der leichheit			T-T	est für die Mit	telwertgleichheit		
Diast. Blutdruck bei Behandlungsbeginn						Mittelwert	Standardfehler	95% Konfiden Differ	zintervall der renz
Berlandiangobeginn	F	Sig.	t	df	Sig. (2-seitig)	differenz	differenz	Unterer	Oberer
Varianzgleichheit angenommen	,730	,393	,287	367	,774	,186	,648	-1,089	1,461
Varianzgleichheit nicht angenommen			,287	366,871	,774	,186	,648	-1,088	1,460

Erläuterungen zur Tabelle *Test bei unabhängigen Stichproben*: In der ersten Zeile sind die Ergebnisse des klassischen t-Tests sowie ein Konfidenzintervall für die Mittelwertdifferenz dargestellt. In der zweiten Zeile findet man die Ergebnisse des modifizierten Tests nach Welch sowie ein modifiziertes Konfidenzintervall. Kann von einer Gleichheit der Varianzen ausgegangen werden, so verwendet man die Ergebnisse der ersten Zeile. Andernfalls sind die Angaben der zweiten Zeile zu entnehmen. Zur Entscheidung, welcher der beiden Tests geeigneter ist, kann man den Levène-Test verwenden.

Begriffe:

F	Prüfgröße des Levène-Tests auf Gleichheit der
	Varianzen in beiden Gruppen
Signifikanz	p-Wert des Levène-Tests
Т	Prüfgröße des t-Tests
df	Freiheitsgrade
Sig. (2-seitig)	zweiseitiger p-Wert des entsprechenden t-Tests
Mittlere Differenz	Mittelwertdifferenz

2.6. Unverbundener Wilcoxon-Test (Mann-Whitney-U-Test)

Hier verwendete Datenmenge:	VERDINUM.SAV
Hier verwendete Subkollektive:	Behandlung mit Hydrochlorothiazid oder
	mit Verapamil
Hier verwendete Variable:	DIAST0 (Diastolischer Blutdruck bei
	Behandlungsbeginn), THER (Behandlung)

Die Befehlsfolge Analysieren, Nichtparametrische Tests, Alte Dialogfelder, Zwei unabhängige Stichproben führt in das Dialogfeld *Tests bei zwei unabhängigen Stichproben*. Die interessierende Variable, hier *diast0*, ist in das Feld **Testvariablen** und die Gruppierungsvariable, hier *ther*, in das Feld **Gruppenvariable** einzusteuern. Nunmehr verlangt SPSS die Angabe der Ausprägungen für die beiden Subgruppen im Dialogfeld *Gruppen definieren* (wie beim t-Test). Nach Betätigung von **OK** im übergeordneten Dialogfeld *Tests bei zwei unabhängigen Stichproben* erscheint folgender Output:

	Ränge			
	Behandlung	Ĥ	Mittlerer Rang	Summe der Ränge
Diast. Blutdruck bei Behandlungsbeginn	Hydrochlorothiazid	187	186,04	34789,00
	Verapamil	182	183,93	33476,00
	Gesamtsumme	369		

Teststatistiken^a

	Diast. Blutdruck bei Behandlungs beginn
Mann-Whitney-U-Test	16823,000
Wilcoxon-W	33476,000
U	-,190
Asymp. Sig. (2-seitig)	,850

a. Gruppierungsvariable: Behandlung

Erläuterungen zum SPSS-Ausdruck:

Н	Fallzahlen
Mittlerer Rang	Mittelwerte der Ränge
Mann-Whitney-U	Prüfgröße des Mann-Whitney-Tests
Wilcoxon-W	Prüfgröße des Wilcoxon-Tests
Ζ	Standardisierte Prüfgröße
Asymptotische Signifi-	Zweiseitiger p-Wert des Wilcoxon-Tests
kanz (2-seitig)	

2.7. t-Test für verbundene Stichproben

Hier verwendete Datenmenge:	HFD.SAV
Hier verwendete Variablen:	SPA_PROX (Knochendichte am
	proximalen Messort), SPA_DIST

(Knochendichte am distalen Messort) Um einen t-Test für verbundene ("gepaarte") Stichproben durchzuführen, ist folgende Befehlssequenz abzusetzen: Analysieren, Mittelwerte vergleichen, T-Test bei verbundenen Stichproben 🖈 Dialogfeld *T-Test bei Stichproben mit paarigen Werten*. An dieser Stelle sind die beiden interessierenden Variablen in der Liste zu markieren und mittels der Schaltfläche Übernehmen in das Feld **Paarige Variablen** einzusteuern:

		Pa	arige \	<u>/</u> ariablen:			Ontionen
💞 steroide	*	Pa	ar	Variable1	Variable2		puonen.
Sch_horm			1	🔗 spa_prox	🖉 spa_dist	1	Bootstrap.
Nypothy			2				
hyperthy							
A diabetes							
A hfd	0						
sna prox		2				1	
A sna dist							
dpa_lust							
V upa_iws							
opa_ine							
dpa_refe							
/ hmi	*						

Falls man beim t-Test für verbundene Stichproben das in SPSS hierfür voreingestellte Konfidenzintervall von 95% z. B. in 99% umändern will, so ist die Schaltfläche **Optionen** zu betätigen \checkmark Dialogfeld *T-Test bei Stichproben mit paarigen Werten: Optionen*, wo im Feld **Prozentsatz Konfidenzintervall** die Zahl 99 eingetragen werden muss (nur bei Bedarf, ansonsten bei 95% belassen) :

T-Test bei Stichproben mit paarig
Prozentsatz Konfidenzintervall: 99 %
Fehlende Werte
Fallausschluss Test für Test
© <u>L</u> istenweiser Fallausschluss
Weiter Abbrechen Hilfe

Mit dem Befehl **Weiter** gelangt man wieder in das übergeordnete Dialogfeld. Hier ist, um die Auswertung durchzuführen, **OK** zu betätigen, woraufhin SPSS folgenden Output erzeugt:

Statistik für	Stichproben mit	paarigen Werten
---------------	-----------------	-----------------

		Mittelwert	Н	Standardabw eichung	Standardfehle r Mittelwert
Paar 1	spa_prox	1,3138	269	,27357	,01668
-	spa_dist	,9619	269	,23303	,01421

<u>Erläuterung zur Tabelle *Statistik bei gepaarten Stichproben*: Sie enthält für die Variablen SPA_PROX und SPA_DIST die Werte für den arithmetischen Mittelwert, für den Stichprobenumfang (H), die empirische Standardabweichung und den Standardfehler des Mittel- wertes.</u>

Korrelationen für Stichproben mit paarigen Werten

		H	Korrelation	Sig.
Paar 1	spa_prox & spa_dist	269	,886	,000

<u>Erläuterung zur Tabelle *Korrelationen bei gepaarten Stichproben*: Mit (H) ist die Zahl der in die Korrelation eingegangenen Fälle bezeichnet; es folgt der Korrelationskoeffizient und schließlich der zugehörige p-Wert der Korrelationsberechnung.</u>

Test für	Stichproben n	nit paarigen	Werten
	ouonprobonin	in parangon	

			Paarige Differenzen						
		8	Standardab Mittelwert weichung	Standardfehler Mittelwert	95% Konfidenzintervall der Differenz				
		Mittelwert			Unterer	Oberer	t	df	Sig. (2-seitig)
Paar 1	spa_prox - spa_dist	,35186	,12705	,00775	,33661	,36711	45,421	268	,000

<u>Erläuterung zur Tabelle *Tests für Stichproben mit paarigen Werten*: Hier finden sich Mittelwert und Standardabweichung der Differenzen zwischen beiden Merkmalen, der Standardfehler des Mittelwertes, die untere und obere Grenze des Konfidenzintervalls sowie unter "t" die Prüfgröße des verbundenen t-Tests. Unter der Abkürzung "df" ist die Anzahl der Freiheitsgrade und unter "Sig. (2-seitig)" der p-Wert des verbundenen t-Tests bei zweiseitiger Fragestellung verzeichnet.</u>

HINWEIS: Der p-Wert unter "Sig. (2-seitig)" wird mit drei Nachkommastellen als 0,000 dargestellt (ohne führende Null). Dies bedeutet, dass der p-Wert zu klein ist, um mit drei Dezimalstellen dargestellt zu werden. Allgemein übliche Schreibweisen für einen derart minimalen p-Wert sind:

p < 0,001

oder

p< 0,0005

2.8. Streudiagramm (Scatterplot)

Hier verwendete Datenmenge:	HFD.SAV
Hier verwendete Variablen:	SPA_PROX, HFD
Hier verwendetes Subkollektiv:	GESCHL=2 & ALTER > 30

Bei einem Streu- oder auch Punktediagramm (Scatterplot) wird die gemeinsame Verteilung zweier stetiger Merkmale in einem Koordinatensystem dargestellt. Mit der Befehlsfolge **Grafik, Alte Dialogfelder, Streu-/Punktdiagramm, Einfaches S.** wird als grafische Darstellung ein Streudiagramm gewählt. Mittels **definieren** wird in diesem Beispiel die Variable *hfd* auf die x-Achse und die Variable *spa_prox* auf die y-Achse gelegt. Mit dem Befehl **Titel** kann eine zweizeilige Diagramm-Überschrift eingegeben werden. Nach **OK** erscheint das Streudiagramm.

Nach Aufhellung des Hintergrundes durch Nachbearbeitung stellt sich die Grafik dar wie folgt:

Meist wird noch eine Regressionsgerade zur grafischen Darstellung hinzugefügt, um den Trend der Verteilung der Punkte zu visualisieren: **Elemente, Anpassungslinie bei Gesamtsumme**. Die oft nicht gewünschte, bei SPSS 22 aber automatisch in die Linie eingezeichnete Regressionsgleichung kann nach Markierung entfernt werden mit **Bearbeiten**, **Eigenschaften, Bezugslinie,** Option **Beschriftung zu Linie hinzufügen** deaktivieren, **Anwenden, Schließen**.

Vom Grafik-Editiermodus aus geht es zurück ins Ausgabe-Fenster mit Datei, Schließen.

2.9. Lineare Regression

Hier verwendete Variablen:	
Hier verwendetes Subkollektiv:	

SPA_PROX (abhängig), HFD (unabhängig) GESCHL = 2 & DIABETES = 0

Befehlsfolge: Analysieren, Regression, Linear ★ Dialogfeld *Lineare Regression*. Hier sind die abhängige und die unabhängige(n) Variable(n) in die entsprechenden Felder einzutragen. Für dieses Beipiel bleibt die vorbelegte Option Einschluss im Listenfeld Methode beibehalten. Nach OK wird folgende Ausgabe erzeugt:

Eingegebene/Entfernte Variablen^a

Modell	Eingegebene Variablen	Entfernte Variablen	Methode
1	Hautfaltendicke ^b	8	Aufnehmen

a. Abhängige Variable: Knochendichte (prox. Messort)

b. Alle angeforderten Variablen wurden eingegeben.

Modellübersicht

Modell	R	R-Quadrat	Angepasstes R-Quadrat	Standardfehler der Schätzung
1	,343 ^a	,118	,113	,24932

a. Prädiktoren: (Konstante), Hautfaltendicke

[...]

Koeffizienten^a

		Nicht stan Koeffi	idardisierte zienten	Standardisierte Koeffizienten		
Mode	ell 📃	В	Standardfehler	Beta	t	Sig.
1	(Konstante)	,873	,078		11,122	,000
	Hautfaltendicke	,239	,045	,343	5,264	,000

a. Abhängige Variable: Knochendichte (prox. Messort)

Unter "Modellübersicht" findet man den Korrelationskoeffizienten (R) und das lineare Bestimmtheitsmaß (R-Quadrat). Die Koeffizienten der Regressionsgeraden erscheinen im Abschnitt "Koeffizienten" in der Spalte B, zunächst der Achsenabschnitt a=0,873, dann der Regressionskoeffizient b=0,239.

2.10. Korrelations-Koeffizient nach Pearson

Hier verwendete Datenmenge:	HFD.SAV
Hier verwendetes Subkollektiv:	geschl=2 & diabetes =0
Hier verwendete Variablen:	HFD, SPA_PROX

Bivariate Korrelationen		×
Bivariate Korrelationen	<u>V</u> ariablen:	Optionen Stil Bootstrap
Signifikante Korrelationen markie	eren	Liife
	Abbrechen	HIITE

Befehlsfolge: Analysieren, Korrelation, Bivariat 🖈 Dialogfeld Bivariate Korrelationen

Dort sind die entsprechenden Merkmale aus der Variablenliste in das Feld Variablen einzusteuern. Die Option **Spearman** im Feld **Korrelationskoeffizienten** ist dann zu aktivieren, wenn bei einem oder gar beiden zu korrelierenden Merkmalen keine annähernde Normalverteilung vorliegt. Im Falle annähernder Normalverteilung bei beiden Variablen darf der **Pearson**-Korrelationskoeffizient berechnet werden. **Zweiseitig** im Feld **Test auf Signifikanz** sowie **Signifikante Korrelationen markieren** sind bereits voreingestellt. Die Auswertung kann mit **OK** veranlasst werden.

X Es erscheint als Output die Matrix der Korrelationskoeffizienten (jeweils 1. Zeile):

			Hautfaltendicke	Knochendichte (prox. Messort)
Spearman-Rho	Hautfaltendicke	Korrelationskoeffizient	1,000	,339
		Sig. (2-seitig)	50 (11)	,000
		N	210	210
	Knochendichte (prox.	Korrelationskoeffizient	,339**	1,000
	Messort)	Sig. (2-seitig)	,000,	12
		Ν	210	210

Korrelationen

**. Korrelation ist bei Niveau 0,01 signifikant (zweiseitig).

Der Korrelationskoeffizient ist in der ersten Zeile zu finden, er beträgt hier 0.339. Der p-Wert des Korrelationskoeffizienten findet sich in der Zeile "Sig. (2-seitig)" und ist so klein, dass er bei drei Nachkommastellen nur als 0,000 dargestellt wird, d h.: p < 0,001.

2.11. Partieller Korrelationskoeffizient

Hier verwendete Variablen:	HFD, SPA_PROX
Kontrollvariable:	ALTER
Hier verwendetes Subkollektiv:	GESCHL = 2 & DIABETES = 0

Befehlsfolge: Analysieren, Korrelation, partiell ★ Dialogfeld Partielle Korrelationen. Die weiteren Optionen Zweiseitig und Tatsächliches Signifikanzniveau anzeigen sind hier bereits von der Voreinstellung her aktiviert. Die Variablen hfd und spa_prox sind ins Feld Variablen, die Variable ALTER ins Feld Kontrollvariablen einzusteuern, danach kann OK gegeben werden. - SPSS erzeugt folgenden Output:

		Norrelationen		
Kontrol	Ilvariablen		Hautfaltendicke	Knochendichte (prox. Messort)
alter	Hautfaltendicke	Korrelation	1,000	,076
		Signifikanz (2-seitig)		,274
		df	0	207
	Knochendichte (prox.	Korrelation	,076	1,000
	Messort)	Signifikanz (2-seitig)	,274	
		df	207	0

Karralatianan

Der partielle Korrelationskoeffizient ist wieder in der ersten Zeile zu finden, er beträgt hier 0.076.

Der p-Wert des Korrelationskoeffizienten beträgt bei dieser Analyse (mit Kontrollvariable) 0,274.

2.12. Logistische Regression

Hier verwendete Datenmenge:	VERDINUM.SAV
Hier verwendete Variablen:	RESP8, DIASTO, ALTER, THER,
	VBEH, GESCHL

Die Logistische Regression ist durchzuführen mit Analysieren, Regression, Binär logistisch Dialogfeld Logistische Regression. Dort ist zunächst die abhängige Variable resp8 in das entsprechende Feld einzutragen. In das Feld Kovariaten sind die unabhängigen Variablen diast0, alter, ther und geschl einzusteuern. Danach muss über die Schaltfläche Kategorial das Dialogfeld Kategoriale Variablen definieren aufgerufen werden. Dort müssen die Variablen ther und geschl zusammen markiert und in das Feld Kategoriale Kovariaten eingesteuert werden. Sodann ist im Feld Kontrast ändern der Radio-Button auf Referenzkategorie: Erste zu setzen und auf Ändern zu klicken. Wenn das Dialogfeld die folgende Gestalt aufweist...

22

Logistische Regression: Ka	itegoriale V	/ariablen definieren
Kovariaten:		Kategoriale Kovariaten:
💣 diast0]	ther(Indikator(Erste))
🖋 alter		geschl(Indikator(Erste))
	*	
		Kontrast ändern
		Ko <u>n</u> trast: Indikator 🔻 Ändern
		Referenzkategorie: O Letzte O Erste
	Weiter	Abbrechen Hilfe

kann man mit **Weiter** in das übergeordnete Dialogfeld *Logistische Regression* zurückkehren. Im Listenfeld **Methode** soll die Selektionsmethode **Einschluss** aktiviert sein. Wenn diese Einstellungen vollzogen sind, sollte das Dialogfeld aussehen wie folgt:

Logistische Regression	6 B	X
 ✓ ptnnr ✓ alter ✓ ther ✓ geschl ✓ vbeh ✓ diast0 ✓ resp24 ✓ resp48 	Abhängige Variable: resp8 Block 1 von 1 Vorherige <u>K</u> ovariaten: diast0 alter ther(Cat) geschl(Cat) Methode: Einschluss	Kategorial Speichern Optionen Stil Boo <u>t</u> strap
ОК	Auswahlvaria <u>b</u> le: Bedingung Einfügen Zurücksetzen Abbrechen Hi	lfe

Nunmehr ist noch die Schaltfläche **Optionen** zu betätigen \bigstar Dialogfeld *Logistische Regression: Optionen.* Das Konfidenzintervall von 95% wird eingestellt durch Aktivierung des Kontrollfeldes **Konfidenzint. für Exp(B)**. Der **Hosmer-Lemeshow-Test** ist ebenfalls aufzurufen. Im Feld **Anzeigen** soll die Ausgabe des Ergebnisses nur **Beim letzten Schritt** erfolgen. Dafür ist die entsprechende Option durch Anklicken des Radio-Buttons zu aktivieren, so dass das Dialogfeld *Logistische Regression: Optionen* schließlich das folgende Aussehen aufweist:

Klassifikationsdiagramme	Korrelation der Schätzungen	
Hosmer-Lemeshow-Anpassungsstatistik	Iterationsverlauf	
📙 Fallweise Auflistung der Residuen	Konfidenzintervall für Exp(B): 95 %	
Ausreißer außerhalb 2 std.abw.		
◎ Alle Fälle		
Anzeige		
🛇 B <u>e</u> i jedem Schritt 💿 Beim letzten Schritt		
Wahrscheinlichkeit für schrittweise Methode —	Klassifikationstronowart	0.5
Aufnahme: 0 05 Ausschluss: 0 10	Klassijikationstrennwert.	0,5
	<u>M</u> aximalzahl der Iterationen	20
Hauptspeicher für komplexe Analysen oder g	groise Datasets sparen	

Der Befehl Weiter führt zurück ins übergeordnete Dialogfeld *Logistische Regression*, wo noch **OK** zu geben ist. SPSS erzeugt daraufhin folgenden Output:

Zusammenfassung der Fallverarbeitung

Ungewichtete Fälle*	6	Н	Prozent
Ausgewählte Fälle	Einbezogen in Analyse	352	95,4
	Fehlende Fälle	17	4,6
	Gesamtsumme	369	100,0
Nicht ausgewählte Fälle		0	,C
Gesamtsumme		369	100,0

a. Wenn die Gewichtung in Kraft ist, finden Sie in der Klassifikationstabelle die Gesamtzahl von Fällen.

Codierung abhängiger Variablen

Ursprünglicher Wert	Interner Wert
nein	0
ja	1

Codierungen kategorialer Variablen

			Parameter codierung
		Häufigkeit	(1)
Geschlecht	1	187	,000
	2	165	1,000
Behandlung	Hydrochlorothiazid	178	,000
	Verapamil	174	1,000

Klassifikationstabelle^{a,b}

			Vorhersagewert				
			Therapieerfolg na	ch 8 Wochen	Prozentsatz		
	Beobachtet	nein	ja	richtig			
Schritt 0	Therapieerfolg nach 8	nein	0	175	0,		
	Wochen	ja	0	177	100,0		
	Gesamtprozentsatz				50,3		

a. Die Konstante ist im Modell enthalten.

b. Der Trennwert ist ,500

Block 0: Anfangsblock

Klassifikationstabelle^{a,b}

			V	orhersagewert	
		Therapieerfolg na	ich 8 Wochen	Prozentsatz	
	Beobachtet	nein	ja	richtig	
Schritt 0 -	Therapieerfolg nach 8	nein	0	175	0,
	Wochen	ja	0	177	100,0
	Gesamtprozentsatz				50,3

a. Die Konstante ist im Modell enthalten.

b. Der Trennwert ist ,500

Variablen in der Gleichung

		В	Standardfehler	Wald	df	Sig.	Exp(B)
Schritt 0	Konstante	,011	,107	,011	1	,915	1,011

Nicht in der Gleichung vorhandene Variablen

			Score	df	Sig.
Schritt 0 Variablen	Variablen	diast0	33,922	1	,000
		alter	9,814	1	,002
		ther(1)	8,292	1	,004
		geschl(1)	,402	1	,526
Gesamtstatistik		48,856	4	,000	

Block 1: Methode = Eingabe

Omnibustests der Modellkoeffizienten

		Chi-Quadrat	df	Sig.
Schritt 1	Schritt	52,172	4	,000
	Block	52,172	4	,000,
	Modell	52,172	4	,000,

Modellübersicht

Schritt	-2 Log- Likelihood	R-Quadrat nach Cox & Snell	R-Quadrat nach Nagelkerke
1	435,792 ^a	,138	.184

 a. Die Schätzung wurde bei Iteration Nummer 4 beendet, da Parameterschätzungen sich um weniger als ,001 geändert haben.

Klassifikationstabelle^a

			V	orhersagewert		
			Therapieerfolg na	Therapieerfolg nach 8 Wochen		
	Beobachtet		nein	ja	richtig	
Schritt 1	Therapieerfolg nach 8	nein	109	66	62,3	
	Wochen	ja	55	122	68,9	
	Gesamtprozentsatz				65,6	

Variablen in der Gleichung

								95% Konfidenzin (B)	tervall für EXP
		в	Standardfehler	Wald	df	Sig.	Exp(B)	Unterer	Oberer
Schritt 1 ^a	diast0	-,112	,020	31,601	1	,000	,894	,860	,930
	alter	,031	,011	8,074	1	,004	1,031	1,010	1,054
	ther(1)	,574	,232	6,099	1	,014	1,775	1,126	2,800
	geschl(1)	-,070	,232	,092	1	,762	,932	,592	1,468
	Konstante	9,899	2,103	22,148	1	,000	19907,933		

a. In Schritt 1 eingegebene Variable(n): diast0, alter, ther, geschl.

Erläuterungen zum SPSS-Ausdruck:

Unter *Codierung abhängiger/ kategorialer Variablen* ist abzulesen, wie die Merkmale intern kodiert werden. Daraus wird ersichtlich, dass die Wahrscheinlichkeit des Auftretens der Response modelliert wird ("ja" wird der 1 zugeordnet). Die *Klassifizierungstabelle* dient zur Beurteilung der Modellgüte (Grundlage zur Berechnung von Sensitivität und Spezifität des Vorhersagemodells), ebenso wie der p-Wert des Hosmer-Lemeshow-Tests weiter unten.

Die letzte Tabelle enthält die zentralen Aussagen zur Bewertung der Einflussgrößen. Unter *Sig.* wie *Signifikanz* ist der p-Wert des zweiseitigen Tests für die jeweiligen Einflussgrößen angegeben. Der kleinste p-Wert (,000) ist mit dem diastolischen Blutdruck bei Behandlungsbeginn verbunden. Von den anderen ausgewählten Merkmalen sind auf dem 5%-Niveau ebenfalls signifikant mit der Response assoziiert: *alter* und *ther*.

Das Vorzeichen und der Wert der zu den Merkmalen gehörenden Parameter sind in der Spalte B abzulesen. Unter Exp(B) ist das Odds Ratio der Merkmale zu finden. Zu beachten ist, dass SPSS bei nichtnumerischen Variablen die interne Kodierung benutzt (s. o.). Demzufolge steigt beispielsweise bei der Therapie die Responsewahrscheinlichkeit beim Übergang von *hct* (0) auf *ver* (1) und daher führt das Antihypertensivum Verapamil zu besseren Ergebnissen. Bei älteren Patienten ist wegen des positiven Vorzeichens von B (bzw. weil das Odds Ratio größer eins ist) von einer besseren Wirksamkeit der Antihypertensiva auszugehen. Das negative Vorzeichen für den Effekt des diastolischen Blutdrucks bei Behandlungsbeginn bedeutet, dass die Wahrscheinlichkeit einer Response bei höherem initialem Blutdruck abnimmt.

2.13. Analyse von Überlebenszeiten, KAPLAN-MEIER, Log-Rank-Test

Hier verwendete Datenmenge:	KARZINOM_NEU.SAV
Hier verwendete Subkollektive:	Alter kleiner oder gleich 45 Jahre oder
	Alter größer als 45 Jahre (verschlüsselt
	in Variable AGEGROUP)
Hier verwendete Variablen:	Zeitvariable BEOBREZ (Beobachtungs-
	zeit bis zum evtl. eingetretenen Rezidiv);
	Statusvariable REZIDIV (Rezidiv oder
	Tod aufgetreten: 0=nein, 1=ia)

Mit der Befehlsfolge **Analysieren, Überleben, Kaplan-Meier** gelangt man in das Dialogfeld *Kaplan-Meier*. Dort ist in das Feld **Zeit** die Zeitvariable *beobrez* und in das Feld **Status** die Statusvariable *rezidiv* einzutragen. Dann ist die Schaltfläche **Ereignis definieren** zu betätigen, da SPSS die Ausprägung des interessierenden Ereignisses mitgeteilt werden muss - in diesem Falle ist es die Ausprägung 1 für "Rezidiv oder Tod aufgetreten=ja".

Nun muss in die Zeile **Faktor** die Faktor-Variable *agegroup* eingetragen werden. Durch Betätigung der Schaltfläche **Faktor vergleichen** gelangt man in das Dialogfeld *Kaplan-Meier: Faktorstufen vergleichen*, wo, wie im Folgenden dargestellt, der Log-Rank-Test zu aktivieren ist:

Kaplan-Meier: Faktorstufen vergleichen
Teststatistiken
Log-Rang Ereslow Tarone-Ware
Linearer Trend für Fakterstufen
Zusammengefasst über Schichten Paarweise über Schichten
© <u>F</u> ür jede Schicht © Paa <u>r</u> weise für jede Schicht
Weiter Abbrechen Hilfe

Ein Klick auf Weiter führt zurück in das übergeordnete Dialogfeld *Kaplan-Meier*. Dort ist unter der Schaltfläche **Optionen** das untergeordnete Dialogfeld *Kaplan-Meier*: *Optionen* aufzurufen. In diesem Dialogfeld sind die Optionen Überlebenstabellen und Mittelwert und Median der Überlebenszeit schon vorbelegt. Außerdem ist im Feld **Statistiken** die Option **Quartile** sowie im Feld **Diagramme** die Option Überleben zur Darstellung einer Grafik der Überlebensfunktionen zu aktivieren. Wenn das Dialogfeld folgendes Aussehen aufweist...

Kaplan-Meier: Optionen
⊂Statistiken
☑ Überleben <u>s</u> tabellen
📝 Mittelwert und Median der Überlebenszeit
✓ Quartile
Überleben
Eins-minus-Überleben
🗐 <u>H</u> azard
🔲 Log-Überleben
Weiter Abbrechen Hilfe

...kann man mit **Weiter** zurück in das übergeordnete Dialogfeld *Kaplan-Meier* gelangen. Nach Betätigung von **Ok** erzeugt SPSS folgenden Output (die Überlebenstabellen sind aus Platzgründen in der Abbildung stark gekürzt):

Zusammenfassung	der	Fallverarbeitung
-----------------	-----	------------------

		Anzahl der	Zen	siert
Altersklasse	Gesamtzahl	Ereignisse	Н	Prozent
bis 45 J.	36	6	30	83,3%
über 45 J.	157	48	109	69,4%
Insgesamt	193	54	139	72,0%

[...]

Überlebenstabelle

				Kumulativer Anteil der Überlebenden zu 'Zeit'		Anzahl der	Anzahl der
Altersklass	е	Zeit	Status	Schätzung	Standardfehler	Ereignisse	Fälle
bis 45 J.	1	3,000	1	,972	,027	1	35
	2	3,000	0			1	34
	3	5,000	0			1	33
über 45 J.	28	3,000	1	,992	,008	1	129
	29	3,000	0			1	128
	30	3,000	0			1	127

Mittelwerte und Mediane für Überlebenszeit

	Mittelwert ^a					Med	ian	
	2		95%-Konfidenzintervall				95%-Konfid	enzintervall
Altersklasse	Schätzung	Standardfehler	Untergrenze	Obergrenze	Schätzung	Standardfehler	Untergrenze	Obergrenze
bis 45 J.	55,559	8,337	39,219	71,899	25		83	13
über 45 J.	35,744	3,472	28,938	42,550	26,000	2,884	20,348	31,652
Insgesamt	40,989	3,660	33,816	48,163	34,000	5,587	23,049	44,951

a. Wenn die Schätzung zensiert ist, wird sie auf die größte Überlebenszeit begrenzt.

Perzentile

	44	50,0%	Ī	75,0%
Altersklasse	Schätzung	Standardfehler	Schätzung	Standardfehler
bis 45 J.			47,000	18,165
über 45 J.	26,000	2,884	14,000	1,775
Insgesamt	34,000	5,587	16,000	1,482

Gesamtvergleiche

	Chi-Quadrat	df	Sig.
Log Rank (Mantel-Cox)	5,695	1	,017
Test auf Gleichheit der Ü	berlebensverteilu	ngen für	

verschiedene Stufen von Altersklasse.

Erläuterungen zum SPSS-Output:

Mittelwert/Schätzung	geschätzte mittlere Zeit, rezidivfrei zu überleben (oft
	nicht sehr aussagekräftig)
Median/Schätzung	geschätzte mediane Zeit, rezidivfrei zu überleben
Standardfehler	zugehörige geschätzte Standardabweichungen
Perzentile (25% / 50% / 75%	5) Zeitpunkt, bei dem die geschätzte Wahrscheinlichkeit,
	rezidivfrei zu überleben, 25%, 50% oder 75% erreicht.
Die Ergebnisse des Log-Ranl	k-Tests findet man im Abschnitt Gesamtvergleiche in der Zeile
"Log-Rank (Mantel-Cox)":	
Chi-Quadrat	Prüfgröße
df	Freiheitsgrade
Sig.	p-Wert ("Signifikanz") des zweiseitigen Tests

Erläuterungen zur Grafik:

Die Grafik der Rezidivfreiheitsfunktionen muss nachbearbeitet werden (Doppelklick auf Grafik). Zur Änderung der Linienfarbe in schwarz sind die Überlebensfunktionen einzeln zu markieren; das Dialogfeld *Eigenschaften* ist über das Kontextmenü (rechte Maustaste) erreichbar. Die Achsenbeschriftungen können durch Doppelklick editiert, bei Bedarf (2. Überschrift) kann ein Textfeld eingefügt werden. Die Legende lässt sich verschieben. Nachdem auch die Überschrift eingesetzt, die Linienfarbe in schwarz geändert und die Achsenbeschriftung entsprechend angepasst wurde, sollte die Grafik folgende Gestalt aufweisen:

2.14. Regression für zensierte Beobachtungen (Cox-Regression)

Hier verwendete Datenmenge: Hier verwendete Variablen: KARZINOM.SAV BEOBREZ, REZIDIV, ALTER, TSTAD, OPTHER. Fehlwerte ("keine Angabe") wurden ausgeschlossen (s. 1.3.5. und Datenbeschreibung S. 34/35).

Mit der Befehlsfolge Analysieren, Überlebensanalyse, Cox-Regression gelangt man in das Dialogfeld *Cox-Regression*. Die Zeit-und die Status-Variable sind genauso wie in 2.13. zu behandeln. Man trägt die interessierenden Kovariablen in das entsprechende Feld ein (hier: *alter, tstad, opther*). Die Methode Einschluß soll beibehalten werden:

Cox-Regression		×
fall f	Zeit: beobrez Status: rezidiv(1) Ereignis definieren Block 1 von 1 Vorherige Nächste Kovariaten: alter tstad opther Methode: Einschluss	Kategorial Diagramme Speichern Optionen Bootstrap
OK <u>E</u> infi	ügen Zurücksetzen Abbrechen	Hilfe

Unter den **Optionen** wählt man durch anklicken des Kontrollfeldes (erscheint ein Häkchen!) das 95%-Konfidenzintervall für Exp(B):

Cox-Regression: Optionen	x
Modellstatistik Konfidenzintervall für Exp(B) 95 🖜 %	Wahrscheinlichkeit für schrittweise Methode Auf <u>n</u> ahme: ,05 Ausschluss: ,10
 Korrelation der Schätzungen Modellinformationen anzeigen Bei jedem Schritt 	Maximalzahl der Iterationen 20
◎ Beim <u>I</u> etzten Schritt	Grundlinienfunktion anzeigen
Weiter	rechen Hilfe

Mit Weiter gelangt man wieder in das übergeordnete Dialogfeld *Cox-Regression*. Ein Klick auf die Schaltfläche Kategorial führt in das Dialogfeld *Cox-Regression: Kategoriale Kovariaten definieren*. Dort sind die Variablen *tstad* und *opther* in das Feld Kategoriale Kovariaten einzusteuern. Beide Variablen müssen markiert sein; dann im Feld Kontrast ändern den Radio-Button auf die Option Referenzkategorie: Erste setzen und die Schaltfläche Ändern anklicken.

Nachdem die beschriebenen Einstellungen getroffen sind, sollte das Dialogfeld folgende Gestalt besitzen:

Cox-Regression: Kategoria	ale Kovariaten definieren 🛛 🗙	
Kovariaten:	Kategoriale Kovariaten:	
siter 🤣	tstad(Indikator(Erste)) opther(Indikator(Erste))	
	Kontrast ändern Kontrast: Indikator TÄndern Referenzkategorie: OLetzte OErste	
Weiter Abbrechen Hilfe		

Ein Klick auf **Weiter** führt ins übergeordnete Dialogfeld *Cox-Regression*, wo zur Ausführung der Berechnung noch **OK** zu geben ist. Es erscheint nun folgender Output:

Cox-Regression

Zusammenfassung der Fallverarbeitung

		Н	Prozent
In Analyse verfügbare	Ereignis ^a	54	28,0%
Falle	Zensiert	112	58,0%
	Gesamtsumme	166	86,0%
Nicht verwendete Fälle	Fälle mit fehlenden Werten	0	0,0%
	Fälle mit negativer Zeit	0	0,0%
	Zensierte Fälle vor dem ersten Ereignis in der Schicht	27	14,0%
	Gesamtsumme	27	14,0%
Gesamtsumme		193	100,0%

a. Abhängige Variable: beobrez

Codierungen kategorialer Variablen^{a,c}

		Häufigkeit	(1)	(2)	(3)	(4)
tstad ^b	1	19	0	0	0	0
	2	66	1	0	0	0
	3	41	0	1	0	0
	4	65	0	0	1	0
	5	2	0	0	0	1
opther ^b	1	172	0	0	0	
	2	14	1	0	0	
	3	5	0	1	0	
	4	2	0	0	1	

a. Kategorievariable: tstad

b. Codierung von Indikatorparametern

c. Kategorievariable: opther

Block 0: Anfangsblock

Omnibustests der Modellkoeffizienten

	ε.,
-2 Log-Likelihood	
457,69	7

Block 1: Methode = Eingabe

Omnibustests der Modellkoeffizienten^a

	Gesamt (Score)			Änderun	g vom vorherigen S	Änderung vom vorherigen Block		
-2 Log- Likelihood	Chi-Quadrat	Freiheits grade	Sig.	Chi-Quadrat	Freiheitsgrade	Sig.	Chi-Quadrat	Freiheitsgrade
435,865	26,799	7	,000	21,832	7	,003	21,832	

a. Anfangsblock 1. Methode = Eingabe

				Freiheits			95,0% Konfider Exp(l	izintervall für 3)
	В	SE	Wald	grade	Sig.	Exp(B)	Unterer	Oberer
alter	-,001	,012	,004	1	,950	,999	,977	1,023
tstad			21,245	4	,000			
tstad(1)	,574	,769	,558	1	,455	1,776	,394	8,011
tstad(2)	,721	,790	,833	1	,361	2,056	,437	9,665
tstad(3)	1,722	,756	5,187	1	,023	5,593	1,271	24,610
tstad(4)	3,027	1,037	8,517	1	,004	20,641	2,703	157,641
opther	12.72.02.02.02	2002355567	4,948	2 ^a	,084	\$94342399456424	102024-01002	
opther(1)	,362	,532	,463	1	,496	1,436	,506	4,074
opther(2)	1,356	,628	4,666	1	,031	3,879	1,134	13,272

Variablen in der Gleichung^b

a. Freiheitsgrad aufgrund konstanter oder linear abhängiger Kovariaten reduziert

b. Konstant oder linear abhängige Kovariaten opther(3) = tstad(4) ;

Kovariate Mittelwerte Mittel

	Mittelwert
alter	56,602
tstad(1)	,331
tstad(2)	,211
tstad(3)	,361
tstad(4)	,012
opther(1)	,078
opther(2)	,030
opther(3)	,012

Erläuterung zum SPSS-Output:

Im Abschnitt "Variablen in der Gleichung" findet man in den entsprechenden Spalten

В	Regressionskoeffizient der Cox-Regression
SE	zugehöriger Standardfehler
Wald	Prüfgröße
df	Freiheitsgrade
Signifikanz	p-Wert des zugehörigen Tests
Exp(B)	Hazard Ratio, wenn die entsprechende Variable um eine
	Einheit erhöht wird
Untere / Obere	untere / obere Grenze des Konfidenzintervalls für das relative
	Risiko

2.15. Bland-Altman-Plot

Hier verwendete Datenmenge:	ANTIMOD.SAV (wurde nur für diese Anleitung erstellt)
Hier verwendete Variablen:	ANTIK ("Erfasste Messwerte, altes Gerät"),
	MODERN ("Erfasste Messwerte, modernes Gerät")

Der Bland-Altman-Plot ist wie das schon in 2.8. behandelte Streudiagramm (Scatterplot) eine Punktewolke. Überdies aber enthält ein fertiger Bland-Altman-Plot drei zusätzliche von Werten der Y-Achse ausgehende waagerechte Bezugslinien. Die mittlere Bezugslinie befindet sich in Höhe des Mittelwertes der Differenzen der Messwerte. Über dieser "Mittelwert-Linie" wird eine weitere Gerade eingetragen, deren Wert sich errechnet aus dem Mittelwert plus der doppelten Standardabweichung des auf Y aufgetragenen Merkmals (Differenzen der Messwerte). Unter der "Mittelwert-Linie" wird die dritte Gerade eingetragen, welche sich aus dem Mittelwert minus der doppelten Standardabweichung errechnet. Die Region innerhalb der oberen und der unteren Bezugslinie enthält unter Annahme der Normalverteilung 95% der Werte.

Vorgehensweise bei Erzeugung des Bland-Altman-Plots:

a) Punktewolke erzeugen und editieren: Befehlsfolge **Grafik, Alte Dialogfelder, Streu-**/**Punkt-Diagramm, Einfaches Streudiagramm, Definieren** => Dialogfeld *Einfaches Streudiagramm*. In die Eingabezeile für die X-Achse wird die Variable des Mittelwertes der einzelnen Messungen eingesteuert, während die Variable der Differenzen der Messwerte auf die Y-Achse zu legen ist. Das entstandene Streudiagramm muss nun mit Doppelklick (mitten hinein) <u>editiert</u> werden.

b) Skala der Y-Achse anpassen: da die Bezugslinie für den höchsten Wert (11,1865) nicht sichtbar ist, wird jetzt die <u>Skalierung geändert</u> mit **Bearbeiten**, **Y-Achse auswählen**, Register **Skala**. Deaktivieren Sie das Kontrollfeld **Auto** vor der Eingabezeile **Maximum** und geben Sie dort unter **Benutzerdefiniert** den Wert 14 ein. Verkleinern Sie zudem die Unterteilung der Y-Achsenskala von 5 auf 2 wie folgt: deaktivieren Sie das Kontrollfeld **Auto** vor der Eingabezeile **Erstes Inkrement** und geben Sie dort unter **Benutzerdefiniert** den Wert 2 ein. Beenden Sie die Anpassung der Y-Achse mit **Anwenden**, **Schließen**.

- c) Auftragung der drei Geraden auf der Y-Achse, nachdem der Mittelwert und die Standardabweichung der Differenzen berechnet wurden:
 - Für den Mittelwert der Differenzen (hier im Beispiel: 1,7883);
 - Für Mittelwert <u>plus</u> 2-fache Standardabweichung (hier im Beispiel: 11,1865);
 - Für Mittelwert <u>minus</u> 2-fache Standardabweichung (hier im Beispiel: -7,6099).

Befehlsfolge: **Optionen, Bezugslinie für Y-Achse** ==> Dialogfeld *Eigenschaften,* Register **Bezugslinie.** Es wird automatisch bei beliebigem Wert eine Linie erzeugt, deren neue Position nun in der Eingabezeile **Achsenposition** einzutragen ist: 1,7883. Nun muss **Anwenden** und **Schließen** befohlen werden. Dieser Vorgang ist für die beiden anderen Positionierungswerte analog zu wiederholen. Zum Schluss sollte die Grafik folgende Gestalt aufweisen:

Nach Schließen des Grafik-Editors ist der Bland-Altman-Plot Bestandteil der Ausgabe.

2.16. Kappa-Maß, McNemar-Test

Hier verwendete Datenmenge:BEFUNDE.SAV (wurde nur für diese Anleitung erstellt) Hierverwendete Variablen:BEFUND_1 ("Werte von Befunder 1", Ausprägungen:
"0=unauffällig, 1=auffällig, 3=pathologisch")
BEFUND_2 ("Werte von Befunder 2")

Soll zwecks Feststellung von Unterschieden zwischen den kategorialen Ergebnissen zweier Befunder ein McNemar-Test sowie das dazugehörige Kappa-Maß berechnet werden, so ist folgendermaßen vorzugehen:

Befehlsfolge Analysieren, Deskriptive Statistiken, Kreuztabellen: ==> Dialogfeld *Kreuztabellen*. In dessen Variablen-Eingabezeilen (Zeilen: / Spalten:) sind die beiden Merkmale einzusteuern, wobei die Reihenfolge beliebig ist. Danach ist die Schaltfläche Statistiken anzuklicken, um in das Dialogfeld *Kreuztabellen: Statistik* zu gelangen, wo durch Anklicken des jeweiligen Kontrollfeldes das Kappa-Maß und der McNemar-Test aufzurufen wären. Der Befehl Weiter führt zurück ins übergeordnete Dialogfeld *Kreuztabellen*. Dort können entweder durch Betätigung der Schaltfläche Zellen... noch zusätzliche Informationen

für die Kreuztabelle (**Zeilen-/Spaltenprozente**) hervorgerufen oder durch Klick auf **OK** die Berechnung von McNemar-Test und Kappa-Maß direkt angestoßen werden. Es wird daraufhin folgender Output ausgegeben (Auszug):

- für den McNemar-Test:

Ch	i-Quadrat-Te	ests		p-Wert des McNemar- Tests
	Wert	df	Asymp. Sig. (zweiseitig)	\mathbf{V}
McNemar-Bowker-Test	11,727	3	,008	
Anzahl der gültigen Fälle	159			

- für das Kappa-Maß:

Карра-Мав

	Symmetrisch	ne Maße				
		Wert		Asymp. Standardfehler ª	Näherungs weise A ^b	Näherungs weise Sig.
Maß für die Übereinstimmung	Карра	,197		,060	3,511	,000
Anzahl der gültigen Fälle		159)			

a. Die Nullhypothese wird nicht vorausgesetzt.

b. Unter Annahme der Nullhyphothese wird der asymptotische Standardfehler verwendet.

2.17. Einfaktorielle ANOVA

Hier verwendete Datenmenge:	KARZINOM.SAV
Hier verwendete Variablen:	ALTER, MENOP (Menopausenstatus)

Die Befehlsfolge Analysieren, Mittelwerte vergleichen, Einfaktorielle Varianzanalyse führt in das Dialogfeld *Einfaktorielle Varianzanalyse*. Die interessierende Variable, hier *alter*, ist in das Feld Abhängige Variablen und die Gruppierungsvariable, hier *menop*, in die Zeile Faktor einzusteuern. Nach Betätigung von OK erscheint folgender Output:

ANOVA

	Quadratsumme	df	Mittel der Quadrate	F	Sig.
Zwischen Gruppen	17348,065	2	8674,033	117,761	,000
Innerhalb der Gruppen	13994,950	190	73,658		
Gesamtsumme	31343,016	192			

Erläuterungen zum SPSS-Ausdruck:

alter

Signifikanz	p-Wert der Varianzanlyse

2.18. Kruskal-Wallis-Test

Hier verwendete Datenmenge:	KLWA_DEMO.SAV (wurde nur für diese
	Anleitung erstellt)
Hier verwendete Variablen:	MESSWERT, GRUPPE

Die Befehlsfolge Analysieren, Nichtparametrische Tests, Alte Dialogfelder, K unabhängige Stichproben führt in das Dialogfeld *Tests bei mehreren unabhängigen Stichproben*. Die interessierende Variable, hier MESSWERT, ist in das Feld Testvariablen und die Gruppierungsvariable, hier GRUPPE, in das Feld Gruppierungsvariable einzusteuern. Danach ist der Dialog Bereich definieren zu aktivieren. Unter *Bereich für Gruppierungsvariable* verlangt SPSS die Angabe der niedrigsten und der höchsten Ausprägung der Gruppierungsvariablen. Nach Betätigung von Weiter sowie von OK im übergeordneten Dialogfeld *Tests bei mehreren unabhängigen Stichproben* erscheint folgender Output (Auszug):

Teststatistiken^{a,b}

	messwert
Chi-Quadrat	183,006
df	3
Asymp. Sig.	,000

a. Kruskal-Wallis-Test

 b. Gruppierungsvariable: gruppe

Unter Asymptotische Signifkanz ist der p-Wert des Kruskal-Wallis-Tests verzeichnet.

2.19. Friedman-Test

Hier verwendete Datenmenge:	SCHWIMMBADNUTZUNG (wurde nur für diese
	Anleitung erstellt)
Hier verwendete Variablen:	PNR (ProbandInnennummer)
	JUN, JUL AUG; SEP (Anzahl der Schwimmbadbesuche
	der einzelnen ProbandInnen in den entprechenden
	Monaten)

Mit der Befehlsfolge Analysieren, Nichtparametrische Tests, Alte Dialogfelder, K verbundene Stichproben gelangt man in das Dialogfeld *Tests bei mehreren verbundenen Stichproben*, wo der Friedman-Test im Kontrollfeld schon aktiviert ist. In das Feld Testvariablen sind die interessierenden Variablen einzusteuern, in diesem Falle JUN, JUL, AUG und SEP. Wenn das Dialogfeld sich wie folgt darstellt...

...kann **OK** betätigt werden. Im Ausgabe-Fenster erscheint daraufhin die Liste der mittleren Ränge aller Variablen sowie die Teststatistik für den Friedman-Test:

	Mittlerer Rang
Schwimmbadbesuche im Juni	1,47
Schwimmbadbesuche im Juli	2,77
Schwimmbadbesuche im August	3,11
Schwimmbadbesuche im September	2,64

Н	297
Chi-Quadrat	279,135
df	3
Asymp. Sig.	,000

Erläuterungen zum SPSS-Ausdruck:

Chi-Quadrat: Prüfgröße des Friedman-Tests

df: Freiheitsgrade

Asymptotische Signifikanz: p-Wert des Friedman-Tests.

3. Beschreibung der in dieser Anleitung benutzten Datenmengen

3.1. Datenmenge HDF.SAV

Ein aussagekräftiges diagnostisches Verfahren zur Erkennung der Osteoporose (besonders bei Frauen) ist die Messung der Knochendichte, die jedoch mit nicht unerheblichem Aufwand verbunden ist. Daher wurde die Frage diskutiert, ob man durch die wesentlich einfachere Bestimmung der Hautfaltendicke (HFD) mittels einer neuen Methode relativ zuverlässig auf die Knochendichte und damit auf eine mögliche Osteoporose Gefährdung schließen kann.

In einer Dissertation (R. Zawalski, 1997) wurden für insgesamt 222 weibliche und 47 männliche Patienten im Alter von 14 - 82 Jahren die HFD, die Knochendichte nach verschiedenen Methoden, sowie verschiedene Faktoren, die einen Einfluss auf die genannten Größen haben könnten, erhoben. Im Einzelnen besteht die Datenmenge HFD aus folgenden Variablen:

Variablenname	Inhalt
FALLNR	fortlaufende Nummer der Patienten
GESCHL	Geschlecht (1=männlich, 2=weiblich)
ALTER	Alter in vollendeten Jahren
GROESSE	Körpergröße in cm
GEWICHT	Körpergewicht in kg
BMI	Body Mass Index = Körpergewicht [kg], dividiert durch
	Körperlänge ² [m ²]
STEROIDE	Einnahme von Steroiden (0=nein, 1=ja)
SCH_HORM	Einnahme von Schilddrüsenhormonen (0=nein, 1=ja)
HYPOTHY Vorlieg	gen einer Hypothyreose (0=nein, 1=ja) HYPERTHY
Vorliegen einer	Hyperthyreose (0=nein, 1=ja) DIABETES
Vorliegen von Diab	etes (0=nein, 1=ja)
HFD	Hautfaltendicke am Handrücken [mm]
SPA_PROX	Knochendichte am proximalen Messort [mg/cm ²]
SPA_DIST	Knochendichte am distalen Messort [mg/cm ²]
DPA_LWS	Knochendichte an der Lendenwirbelsäule [mg/cm ²]
DPA_LIFE	Knochendichte am linken Femurhals [mg/cm ²]
DPA_REFE	Knochendichte am rechten Femurhals [mg/cm ²]

Die SPA-Werte wurden mit Single-Photonen-Absorptiometrie, die DPA-Werte mit Dual-Photonen-Absortiometrie bestimmt; letztere wurden nur für 110 bzw. 111 Frauen erhoben.

3.2. Datenmenge KARZINOM.SAV

In einer retrospektiven Studie (Dissertation H. Rößler, Mainz 1986) sollte untersucht werden, ob der Rezeptorstatus für Östrogen und Progesteron eine prognostische Bedeutung für das Auftreten von Rezidiven bei Frauen mit Mamma-Karzinom hat. Außerdem wurden weitere mögliche prognostische Faktoren sowie die verschiedenen Therapien, die die Frauen erhalten hatten, erhoben. Insgesamt standen die Daten von 193 Frauen mit Mamma-Karzinom, bei denen die Therapie zunächst zur Remission geführt hatte, zur Verfügung.

Variablenname	Inhalt
FALL	Fall-Nummer
ALTER	Alter (in vollendeten Jahren) (99=keine Ang.)
MENOP	Menopausenstatus (1=Prae, 2=Peri, 3=Post, 9=keine Ang.)
TSTAD	Tumorstadium (0=T0, 1=T1, 2=T2, 3=T3, 4=T4, 5=keine Ang.)
NSTAT	Lymphknotenstatus (0=N0, 1=N1, 2=N2, 3=N3, 4=keine Ang.)
OESTR	Rezeptorstatus Oestrogen (1=positiv, 2=negativ, 9=keine Ang.)
PROG	Rezeptorstatus Progesteron (1=positiv, 2=negativ, 9=keine
	Ang.)
OPTHER	Operative Therapie (1=radikal, 2=eingeschränkt, 3=Probe-
	exzision, 4=Punktion, 9=keine Ang.)
CHTHER	Chemotherapie (0=nein, 1=therapeutisch, 2=adjuvant, 9=keine
	Ang.)
HOTHER	Hormontherapie (0=nein, 1=ja, 9=keine Ang.)
BESTR	Bestrahlung (0=nein, 1=ja, 9=keine Ang.)
REZIDIV	Rezidiv oder Tod aufgetreten (0=nein, 1=ja)
BEOBREZ	Beobachtungszeit bis zum (evtl.) eingetretenen Rezidiv
	(Monate)
AGEGROUP	Altersgruppe (1 für <=45 Jahre, 2 für > 45 Jahre), nur in
	Datenmenge KARZINOM_NEU.SAV vorhanden

3.3. Datenmenge SCHWIMMBADNUTZUNG

Diese fiktive Datenmenge enthält 297 Fälle. Sie dient zu Lehr- und Demonstrationszwecken.

Variablenname	Inhalt
PNR	PNR (ProbandInnennummer)
JUN	Anzahl der Schwimmbadbesuche im Juni
JUL	Anzahl der Schwimmbadbesuche im Juli
AUG	Anzahl der Schwimmbadbesuche im August
SEP	Anzahl der Schwimmbadbesuche im September

3.4. Datenmenge SPORT_LMK

Diese fiktive Datenmenge enthält 442 Fälle. Sie dient zu Lehr- und Demonstrationszwecken.

Variablenname	Inhalt
NR	Nummer des Falles
GESCHL	Geschlecht der SportlerIn / des Sportlers (0=männlich, 1=weiblich)
GEWICHT	Körpergewicht in kg
STRANDUR	normalerweise Strandurlaub durchgeführt (0=nein, 1=ja)
GROESSE	Körpergröße in Meter
SPORTART	ausgeübte Sportart (1=Leichtathletik, 2=Mannschaftssport,
	3=Kraftsport)

3.5. Datenmenge VERDINUM.SAV

In der VERDI-Studie (Holzgreve et al.[1989], Bristish Medical Journal 299, 881-886) wurde der Kalziumantagonist Verapamil mit dem Diuretikum Hydrochlorothiazid bezüglich der antihypertensiven Wirksamkeit verglichen. Es nahmen insgesamt 369 Patienten an der Studie teil, für die nach dem Zufallsprinzip festgelegt wurde, welche von beiden Behandlungen sie erhielten. Bei jedem Patienten wurde der Behandlungseffekt nach 8, 24 und 48 Wochen qualitativ beurteilt (Zielkriterium: diastolischer Blutdruck < 90 mmHg). Für einige Patienten war der Behandlungserfolg ("Response") nicht beurteilbar, da sie ihre Teilnahme an der Studie vorzeitig beendeten.

Variablenname	Inhalt
PTNNR	Fortlaufende Patientennummer
ALTER	Lebensalter bei Behandlungsbeginn [Jahre]
THER	Behandlung [HCT: Hydrochlorothiazid / VER: Verapamil]
GESCHL	Geschlecht [m: männlich / w: weiblich]
VBEH	Vorbehandlung mit Antihypertensiva [ja/nein]
DIAST0	Diastolischer Blutdruck bei Behandlungsbeginn [mmHg]
RESP8	Therapieerfolg nach 8 Wochen [ja/nein]
RESP24	Therapieerfolg nach 24 Wochen [ja/nein]
RESP48	Therapieerfolg nach 48 Wochen [ja/nein]

4. Index der wichtigsten Befehlsfolgen

Absolute und relative Häufigkeiten (kategoriale Variable(n))	[S. 10]
Balkendiagramm	[-]
Grafiken, Veraltete Dialogfelder, Balken Boxplot	[S. 14]
Grafiken, Veraltete Dialogfelder, Boxplot	
Chi-Quadrat-Unabhängigkeitstest	[S. 10]
Statistik, Chi-Quadrat, Weiter, OK	
Cox-Regression	[S. 29]
Datei aufteilen	[S. 8]
Daten, Datei aufteilen, Ausgabe nach Gruppen aufteilen Datei aufteilen rückgängig machen (aufheben)	[S 8]
Daten, Datei aufteilen, Alle Fälle analysieren, OK	[5. 0]
Datei öffnen (im Daten-Editor)	[S. 2]
Datei speichern (Ausgabe-Viewer-Fenster)	[S. 4]
Datei, Speichern unter, Dateiname eintragen, OK	50.053
Einfaktorielle ANOVA Analysieren, Mittelwerte vergleichen, Einfaktorielle ANOVA.	[S. 35]
Variablen eintragen, OK	
Exakter Fisher-Test	[S. 10]
Statistik, Chi-Quadrat, Weiter, OK	
Fälle auswählen	[S. 9]
Fallauswahl rückgängig machen (aufheben)	[S. 9]
Daten, Fälle auswählen, Alle Fälle	
Grafiken, Veraltete Dialogfelder, Histogramm	
Kaplan-Meier Überlebensraten-Schätzung	[S. 26]
Analysieren, Uberlebensanalyse, Kaplan-Meyer Kappa-Maß	[\$ 33]
Analysieren, Deskriptive Statistiken, Kreuztabellen, Statistik,	[0.00]
Kontrollfeld Kappa aktivieren, Weiter, OK Kategorisieren einer stetigen Variablen	[5 6]
Transformieren, Umkodieren, in andere Variablen	[5. 0]
Korrelationskoeffizient nach Pearson	[S. 21]
Korrelationskoeffizient nach Spearman	[-]
Analysieren, Korrelation, Bivariat, Pearson deaktivieren, Spearman aktivieren	
Korrelationskoeffizient, partiell	[S. 22]
Kruskal-Wallis-Test	[S. 35]
Analysieren, Nichtparametrische Tests, Alte Dialogfelder, K unabhängige Stichproben Variablen eintragen, Bereich definieren Weiter, OK	
Lineare Regression	[S. 21]
Analysieren, Regression, Linear	[6 22]
Analysieren, Regression, Binär logistisch	[3. 23]
McNemar-Test	[S. 33]
Kontrollfeld McNemar aktivieren, Weiter, OK	
Neue Variable aus bestehender Variablen berechnen	[S. 7]
Statistische Maßzahlen (stetige Variable(n))	[S. 13]
Analysieren, Deskriptive Statistiken, Häufigkeiten, Variablen einsteuern,	[]
Häufigkeitstabellen anzeigen deaktivieren, Statistik, Maßzahlen	
Streudiagramm (Scatterplot)	[S . 201
Grafiken, Veraltete Dialogfelder, Streudiagramm, Einfach	
1 - 1 est für unverbundene Stichproben Analysieren, Mittelwerte vergleichen, T-Test bei unabhängigen	[8, 15]

Stichproben	
T-Test für verbundene Stichproben	[S. 18]
Analysieren, Mittelwerte vergleichen, T-Test bei gepaarten Stichproben	
Vierfeldertafeln (Kreuztabellen)	[S. 10]
Analysieren, Deskriptive Statistiken, Kreuztabellen	
Wilcoxon-Test (="Mann-Whitney-U-Test") für unverbundene Stichproben	[S. 17]
Analysieren, Nichtparametrische Tests, Zwei unabhängige Stichproben	
Wilcoxon-Test für verbundene Stichproben	[-]
Analysieren, Nichtparametrische Tests, Zwei verbundene Stichproben	

5. Wegweiser zum Aufspüren von Kennzahlen der statistischen Auswertung in SPSS 23

Chi-Quadrat Unabhängigkeits-Test, p-Wert: Zeile Chi-Quadrat nach Pearson / Spalte Asymptotische Signifikanz (2-seitig)

Chi-Quadrat-Tests

	Wert	df	Asymptotische Signifikanz (2-seitig)
Chi-Quadrat nach Pearson	47,094 ^a	6	,000
Likelihood-Quotient	55,191	6	,000
Zusammenhang linear-mit-linear	35,708	1	,000
Anzahl der gültigen Fälle	413		

a. 3 Zellen (25,0%) haben eine erwartete Häufigkeit kleiner 5. Die minimale erwartete Häufigkeit ist ,92.

Cox-Regression, p-Werte: <u>Spalte</u> Signifikanz

Einfaktorielle ANOVA

ONEWAY ANOVA

alter

	Quadratsum me	df	Mittel der Quadrate	F	Signifikanz
Zwischen den Gruppen	17348,065	2	8674,033	117,761	000,
Innerhalb der Gruppen	13994,950	190	73,658		
Gesamt	31343,016	192			

Exakter Fisher-Test, p-Wert: <u>Zeile</u> Exakter Test nach Fisher / <u>Spalte</u> Exakte Signifikanz (2-seitig)

	Wert	df	Asymptotisch e Signifikanz (2-seitig)	E×akte Signifikanz (2-seitig)	E×akte Signifikanz (1-seitig)
Chi-Quadrat nach Pearson	2,105 ^b	1	,147		
Kontinuitätskorrektui ^a	1,554	1	,213		
Likelihood-Quotient	2,106	1	,147		
Exakter Test nach Fisher				,159	,106
Zusammenhang linear-mit-linear	2,084	1	,149		
Anzahl der gültigen Fälle	100				

Chi-Quadrat-Tests

a. Wird nur für eine 2x2-Tabelle berechnet

b.0 Zellen (,0%) haben eine erwartete Häufigkeit kleiner 5. Die minimale erwartete Häufigkeit ist 18,45.

Statistik für Test^a

Friedman-Test, p-Wert: Zeile Asymptotische Signifikanz

Ν	297
Chi-Quadrat	279,135
df	3
Asymptotische Signifikanz	,000

a. Friedman-Test

Kappa-Maß: <u>Zeile</u> Maß der Übereinstimmung Kappa / <u>Spalte</u> Wert Korrelationskoeffizient (bivariat) nach Pearson oder Spearman: <u>Zeile</u> Korrelationskoeffizient / <u>Spalte</u> "Variablenname" (hier: spa_prox)

			hfd	spa_prox
Spearman-Rho	hfd	Korrelationskoeffizient	1,000	,380**
		Sig. (2-seitig)		,000
		N	269	269
	spa_prox	Korrelationskoeffizient	,380**	1,000
		Sig. (2-seitig)	,000	
		N	269	269

Korrelationen

**. Die Korrelation ist auf dem 0,01 Niveau signifikant (zweiseitig).

Kruskal-Wallis-Test

Statistik für Test^{a,b}

	Messwert
Chi-Quadrat	183,006
df	3
Asymptotische Signifikanz	000,

a. Kruskal-Wallis-Test

b. Gruppenvariable: Gruppe

p-Wert: Zeile_Asymptotische Signifikanz, Spalte "Messwert"

Lineare Regression, p-Werte: <u>Spalte</u> Signifikanz

Logistische Regression, p-Werte: <u>Spalte</u>Sig.

Log-Rank-Test: letzte Tabelle der Ausgabe in Zeile Log Rank (Mantel-Cox) / Spalte Sig.

Gesamtvergleiche

	Chi-Quadrat	Freiheitsg	Sig
	CHEQuaulat	laue	Siy.
Log Rank (Mantel-Cox)	15,497	3	,001

Test auf Gleichheit der Überlebensverteilungen für die verschiedenen Stufen von tstad.

McNemar-Test, p-Wert: Zeile McNemar-Bowker-Test / Spalte Asymptotische Signifikanz (2-seitig)

Chi-Quadrat-Tests

	Wert	df	Asymptotische Signifikanz (2-seitig)
McNemar-Bowker-Test	11,727	3	,008
Anzahl der gültigen Fälle	159		

t-Test (unverbunden), p-Wert:

Zeile Varianzen sind nicht gleich / Spalte_Sig (2-seitig)

Test bei unabhängigen Stichproben

		Leven Varian:	e-Test der zgleichheit			T-Test fü	r die Mittelu	vertgleichheit		
							Mittlere	Standardfehler	99% Konfid der Dif	enzintervall ferenz
		F	Signifikanz	т	df	Sig. (2-seitig)	Differenz	der Differenz	Untere	Obere
Diast. Blutdruck bei	Varianzen sind gleich	,730	,393	,287	367	,774	,186	,648	-1,492	1,864
Behandlungsbeginn	Varianzen sind nicht gleich			,287	366,871	,774	,186	,648	-1,491	1,863

t-Test (verbunden), p-Wert: <u>Spalte</u>S

Spalte Sig (2-seitig)

Test bei gepaarten Stichproben

		Gepaarte Differenzen							
		Mittelwert	Standardab weichung	Standardfehler des Mittelwertes	99% Konfid der Dif Untere	enzintervall ferenz Obere	т	df	Sig. (2-seitig)
Paaren 1	spa_prox - spa_dist	,35186	,12705	,00775	,3318	,3720	45,421	268	,000

 Vorzeichentest, p-Wert:
 Zeile Asymptotische Signifikanz (2-seitig) / Spalte "Variablennamen"

(hier: Gewicht in g Frühjahr 07 - Gewicht in g Herbst 06)

Statistik für Test^a

	Gewicht in g Frühjahr 07 - Gewicht in g Herbst 06
Z	-9,540
Asymptotische Signifikanz (2-seitig)	,003

Wilcoxon-Test (unverbunden), p-Wert: Zeile Asymptotische Signifikanz (2-seitig) / Spalte "Variablenname"

(hier: Diast.

a. Vorzeichentest

Blutdruck bei Behandlungsbeginn)

Statistik für Test^a

	Diast. Blutdruck bei Behandlung sbeginn
Mann-Whitney-U	16823,000
Wilcoxon-W	33476,000
z	-,190
Asymptotische Signifikanz (2-seitig)	,850

a. Gruppenvariable: Behandlung

Wilcoxon-Test (verbunden), p-Wert:

Zeile Asymptotische Signifikanz (2-seitig) / Spalte "Variablennamen"

(hier: Gewicht in g Frühjahr 07 – Gewicht in g Herbst 06)

Statistik für Test^p

	Gewicht in g Frühjahr 07 - Gewicht in g Herbst 06
Z	-8,406 ^a
Asymptotische Signifikanz (2-seitig)	,000

a. Basiert auf positiven Rängen.

b. Wilcoxon-Test