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Highlights
Early shifts in network activity constitute
an important first step in the transition
from a healthy towards a disease state.

These network states are often char-
acterized by neuronal hyperactivity –

putatively the start of activity-induced
neurodegeneration – and are associated
with subtle, yet discernable, behavioral
dysregulations.

Local network changes can also occur
in regions and brain circuits that are
not associated with the clinical symp-
toms of later-stage disease.
Neuronal networks possess the ability to regulate their activity states in response
to disruptions. How and when neuronal networks turn from physiological into
pathological states, leading to the manifestation of neuropsychiatric disorders,
remains largely unknown. Here, we propose that neuronal networks intrinsically
maintain network stability even at the cost of neuronal loss. Despite the new sta-
ble state being potentially maladaptive, neural networks may not reverse back to
states associated with better long-term outcomes. These maladaptive states are
often associated with hyperactive neurons, marking the starting point for
activity-dependent neurodegeneration. Transitions between network states
may occur rapidly, and in discrete steps rather than continuously, particularly
in neurodegenerative disorders. The self-stabilizing, metastable, and noncontin-
uous characteristics of these network states can bemathematically described as
attractors. Maladaptive attractors may represent a distinct pathophysiological
entity that could serve as a target for new therapies and for fostering resilience.
It can be argued that from the viewpoint
of the neural network, early changes
in network activity are not necessarily
governed by the aim of preserving long-
term functionality, but rather by the
attempt to achieve a state that is tempo-
rarily stable (a notion we refer to as the
selfish network).

Early neural network state transitions
follow attractor-like dynamics and may
represent a distinct entity that could
be leveraged for new therapies and for
fostering resilience.
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The concept of a selfish network
Many neurological diseases can be diagnosed long before the onset of apparent phenotypic
changes [1–4]. This is paralleled by advances in neuroimaging [5–7] and neurophysiology
[8–10], enabling the identification of subtle changes in the spatiotemporal dynamics of neural net-
work function in animal models and humans [11–16]. These technological advances revealed that
many neurological diseases manifest at the network level long before they become detectable by
their disease-defining phenotypic changes [17–21]. This leads to the important question of when
do the well-known fundamental homeostatic mechanisms of neural network regulation become
maladaptive. Here, we propose that early shifts in network activity constitute an important first
step in the transition from a healthy towards a disease state. Importantly, from the viewpoint of
the neural network, early changes in network activity are not necessarily governed by the aim
to preserve long-term functionality, but primarily by the attempt to achieve a state that is tempo-
rarily stable. The proposed term of a selfish network (see Glossary) reflects this perspective,
which stands in sharp contrast to a teleological view: that is, that the network aims to assume
a state that is optimized for maximal long-term protection of the organism in order to achieve be-
havioral functionality. The selfish network concept shares similarities with the selfish gene concept
[22], which also provided inspiration for the term. In both entities, the fate of the individual carrier
(of the network, or of the gene) is not seen as the primary driving force. Selfish genes do not
prioritize the long-term survival of the given species, and selfish networks do not prioritize the
long-term survival of its neurons. Rather, selfish networks aim for short-term stability,
selfish genes for short-term transmission to the next generation, and, in that, both behave
short-sightedly.
Trends in Neurosciences, Month 2024, Vol. xx, No. xx https://doi.org/10.1016/j.tins.2024.02.005 1
© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

https://orcid.org/0000-0001-9410-4086
https://orcid.org/0000-0002-4023-5301
https://doi.org/10.1016/j.tins.2024.02.005
http://creativecommons.org/licenses/by-nc/4.0/
CellPress logo


6Department of Psychiatry and
Psychotherapy, University Medical
Center of the Johannes Gutenberg-
University Mainz, Mainz, Germany

*Correspondence:
albrecht.stroh@lir-mainz.de (A. Stroh)
and oliver.tuescher@lir-mainz.de
(O. Tüscher).

Trends in Neurosciences
OPEN ACCESS
There is mounting evidence for an early emergence of neuronal hyperactivity associated with
subtle, yet discernable, behavioral dysregulations [23–25]. Local network changes can also
occur in regions and brain circuits that are not associated with the clinical symptoms of later-
stage disease [26]. We hypothesize that an initial and local maladaptive state driven by the prin-
ciple of the selfish network can quickly impact and be impacted by other selfish networks that
may face similar challenges. This principle makes the boundaries of maladaptive networks spatio-
temporally dynamic. Altered network activities can occur outside of the initial molecular patho-
physiological insult [27], in a functionally bound brain. As these interactions cascade, the
organism is forced to homeostatically maintain functionality. However, once certain tipping points
are reached, behavioral functions rapidly decline and severe (sub)clinical phenotypes emerge.We
propose that these early network states are, in principle, receptive for therapeutic interventions,
and occur at all neuronal network spatial scales as they are tightly interconnected [28–30]. To de-
scribe the dynamic trajectories of neural network function, dynamical systems theory offers
opportunities to formulize these sets of stable network states as attractors. In the following,
we discuss the growing body of evidence supporting this concept and we will describe specific
examples to illustrate the impact of the selfish network on disease development and progression.

Increased interindividual phenotypic variability is a consequence of
interindividually varying responses of the network to early challenges
Early changes in the activity of networks may mark an important first stage in the transition to
chronic neuropsychiatric diseases. As discussed in more detail in later sections, disease states
or disease-associated genetic mutations often result in increased inter-individual variability in net-
work characteristics. This heightened variability seems to be a general hallmark of neuronal net-
works that cope with internal perturbations (Figure 1 green line and insert). In principle, each
network can have multiple solutions for coping with local network challenges. Allostatic network
compensations are characterized by distinct, interindividually differing states, both on the level of
the neuronal network (Figure 1 green line and insert; with network compensation phase staring
at T1), and on its phenotypic representation (Figure 1 blue line and insert).

The neuronal network controlling breathing offers a good example to illustrate this phenomenon.
The network known as the preBötzinger complex (preBötC) [31] serves the specific behavioral
function of generating an evenly, clock-like neural rhythm that underlies breathing. This neuronal
network is anatomically and physiologically well defined. Located in the ventrolateral medulla, the
preBötC continues to generate regular respiratory activity even when experimentally isolated
[31–33]. Yet, the respiratory network is vulnerable to metabolic or genetic challenges that can
lead to breathing disturbances associated with various disorders. A major driver of respiratory ac-
tivity is the endogenously released peptide substance P. Genetically knocking out the enzyme
(PPT-A) that is required for the production of this excitatory neuropeptide leads to an increased
intraindividual variability of respiratory activity [34]. The neuromodulatory state of the respiratory
network is also altered in Rett syndrome [35–37]. In an animal model of this neurological disorder,
dramatic changes in the regularity and frequency of the respiratory rhythm are manifested at the
level of the respiratory network weeks before the appearance of any breathing abnormalities at
the organismic level [35].

However, for most other behaviors and neuronal functions it is difficult to temporarily relate
changes at the network level with those at the organismic level. This complexity is illustrated in
Rett syndrome, in domains other than the respiratory system. In this disorder, the degree of
slowing of the background EEG in the delta and theta power and the characteristics of evoked
potentials can reliably be related to the disease progression and symptoms severity [38–40].
These EEG changes are likely caused by changes at the network level [41–43] and the first effects
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Figure 1. Early increases in interindividual variability of phenotypes in the presymptomatic phase of
neurodegenerative disorders may be due to the individual trajectories of network compensation. The
schematic illustrates an archetypical progression through disease stages, and the underlying trajectories of network
function as well as network compensatory mechanisms. Between T0 and T1 the network is able to fully compensate for
the effects of the increasing disease burden; that is, remains within homeostatic boundaries. Between T1 and T3 the
disease burden exceeds the homeostatic compensatory ability of the network, leading to early subtle behavioral signs
while the network finds temporally dynamic, metastable state solutions differing between individuals. At later stages,
particularly at T3, the advanced neuronal cell loss, especially of critical nodes, leading to network sparsification, reduces
the degrees of freedom of the network to compensate. This leads to an accelerating decline in function and network
compensation, resulting in a common final path of rapid functional deterioration with little interindividual variability.
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Glossary
Allostasis: the process by which
physiological equilibrium is maintained
by a system in response to internal or
external perturbation by shifting
homeostatic set points.
Attractors: elements in the parameter
space with self-stabilizing properties in
all dimensions of the parameter space.
Within given boundaries, deflections of
the trajectory in the attractor will lead to
the trajectory returning to the center of
the attractor.
Dynamical systems theory:
mathematical framework constituting of
coupled differential equations describing
the interdependency of variables or
parameters. The numerical solution of
these equations will result in a trajectory
moving through the parameter space,
which can constitute, for example, self-
stabilizing attractors, saddles,
oscillations, or nonstable chaos.
Hyperactivity: in the context of
neuronal circuits, hyperactivity refers to
increase of activity beyond the
homeostatic boundaries of either
neurons or networks.
Network states: discrete set points of
network function.
Network topology: the arrangement
of the elements (neurons, axons,
dendrites, synapses, etc.) of a
communication network, such as a
neural network. Physical topology
describes the placement of the various
components of a network (e.g., location
within the brain and connectivity), while
logical topology illustrates how data
flows within a network.
Neurodegeneration: refers to
pathological processes that leads to a
loss of function and, ultimately, the loss
of nerve cells and disintegration of the
nervous system.
Resilience: physical resilience may be
defined as the ability to withstand or
recover from functional decline following
acute and/or chronic distress. Neural
network resilience is defined as the
maintenance or quick recovery of
adaptive, healthy network states during
and after exposure to significant
challenges, resulting from a dynamic
process of adaptation to the given
challenge.
Selfish networks: a guiding principle of
network behavior according to which
networks aim for gaining stable states of
network function, irrespective of the
long-term survival of the elements of the
network, that is, neurons.
may be seen as early as when network connectivity is first established by immature neurons [44].
Direct comparisons between network-level changes and changes at the level of the EEG are
complicated by a pronounced interindividual variability, but also by temporally dynamic intraindi-
vidual variability [45], which is not only seen in Rett Syndrome but also other neuropsychiatric dis-
orders including schizophrenia [46]. In epilepsy, the complex interrelation of local and global shift
of excitability can also be perceived as an increase of variability [47–49].

Increased intraindividual, longitudinal variability of neural network structures as well as of cognitive
functioning in presymptomatic and early disease states has also been described for Alzheimer’s
disease (AD) [50–52]. Similarly, in Huntington’s disease (HD), increased variability of neural and
behavioral/cognitive functioning in the presymptomatic and prodromal phase has been exten-
sively documented [53]. Of note, a certain amount of neural and behavioral variability in itself is
physiologic and has been argued to be a prerequisite for neural and behavioral adaption
[54,55]. Heightened variability of neural and behavioral functioning, however, may constitute an
important marker and hallmark of early network changes long before phenotypic changes be-
come measurable at the organismic level (see Outstanding questions).

Thus, we propose that the appearance of deficits in molecular/cellular and neuronal network
functions long before the onset of any observable clinical phenotype seems to be a general prin-
ciple of disease progression. We hypothesize that the appearance of cellular/molecular deficits in
different parts of the nervous system will initiate known homeostatic processes that evolved over
millions of years to preserve the neuronal set points [56] – and network functioning – that vary
from subject to subject [57–59].
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Most of these compensatory mechanisms may initially be successful in preserving functionality.
But the persisting cellular/molecular deficits will continue to drive networks away from their evo-
lutionary preserved set points. Yet, the many integrative properties of the brain, which include nu-
merous afferent and efferent network interactions and molecular mechanisms [60], will be able to
preserve functional abilities for an extended time and remain undetected at the organismic level.
We hypothesize that severe signs of a disease become only obvious, at a certain tipping point
when the available compensatory mechanisms are unable to further preserve intact functionality
resulting in a new metastable set point (Figure 1, phase T3 to T4).

Early network changes associated with hyperactive neurons may constitute a
hallmark of presymptomatic disease progression
Network dysregulation at disease stages can occur long before the typical clinical diagnosis or
commencement of therapeutic intervention: in presymptomatic phases of neurodegenerative
disorders such as Parkinson’s disease [61] , HD [62], and AD [25,63], and, in the state of remis-
sion in episodic, secondary neurodegenerative disorders such as multiple sclerosis (MS) [64]. To
probe whether network dysregulations can occur in areas not primarily impacted by the primary
pathophysiological challenge, as hypothesized here, a primary sensory cortex, such as the visual
cortex, might represent a suitable region to assess local functional architecture. While the primary
visual cortex might be mainly associated with the processing of visual afferents, it is a highly inte-
grated region. It receives information from other sensory cortices [65], as well as on the locomo-
tion and emotional state of the organism [66,67], in line with the notion of a bound brain [27]. It
seems therefore plausible that internal perturbations originating in distant regions are reflected
in multiple local network changes throughout the brain, including the primary visually cortex.
For assessing local functional architecture with the aim of detecting neuronal state changes, op-
tical recordings such as two-photon calcium imaging in the visual cortex with single-neuron res-
olution might be well suited [68,69]. In the primary visual cortex of a mouse model of HD, in an
early presymptomatic phase, very far from disease onset, with the disease onset marked by
the occurrence of clinically significant motor symptoms, a local network shift toward hyperactivity
could be identified [62]. The new network state was characterized by an increase of synchronicity,
pointing to an active process in early disease, in line with the proposed concept of early network
state changes (Figure 2). In a mouse model of AD, also in the primary visual cortex, long before
amyloid plaque formation [25], a distinct new neuronal set point could be observed. This set
point was characterized by an altered temporal distribution of spontaneous activity, yet devoid
of hyperactivity. Assessing network topology, a significant degradation of parameters related
to the robustness and capability of the network to compensate node loss could be demonstrated
(Figure 2 middle panel, Networks).

In the experimental autoimmune encephalomyelitis (EAE) mouse model of MS, a shift towards hy-
peractivity in the frontal and visual cortices occurred not at the peak of autoimmune pathology,
but during remission, a phase in which the animals did not show any significant motor symptoms
[64]. The shift in network function was shown to be induced by the local excitatory neurons via the
secretion of tumor necrosis factor (TNF)α, which mediated synaptic plasticity. These networks
were not yet targeted by the disease-defining pathology; that is, these networks were devoid
of demyelination and T-cell infiltration. These findings suggest an active shift in network architec-
ture, rather than a passive consequence of preceding, remote disease process. This raises an im-
portant question: are these early network changes an epiphenomenon which is restricted to the
level of networks, and remains within that level, or does it affect other levels such as behavior?
While assessing a causal relation of a network state to a distinct behavioral representation re-
mains a challenge, in the three forementioned disease models, subtle but discernable behavioral
phenotypes could be observed [25,62,64] (Figure 2 lower panel, Behavior). Whether similar
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behavioral correlates of early changes in network function are observed across other conditions
remains to be examined (see Outstanding questions).

Interventions may reverse network state dynamics and prevent hyperactivity-
induced neurodegeneration
Another important issue is whether the network state switches are reversible, particularly in early
stages of disease that are still devoid of large-scale neurodegeneration. In the forementioned
animal-model studies of neurodegeneration, it was also shown that short-term pharmacological
interventions can reduce the compensatory load on the network, and rebalance the network
(Figure 2) [62,64,70–72]. This newly regained performance plateau can be stable for time periods
that significantly outlast the pharmacokinetics of the applied drug. It is conceivable that
rebalancing neuronal network function may not only stabilize and prolong the plateau phase
and slow disease progression, but also feedback to modify the cellular pathophysiology
[73–76] (Figure 3).

Compensatory mechanisms of the selfish network might result, in turn, in cellular vulnerability. In-
deed, maladaptive hyperactivity, even in brain regions not directly affected by the molecular pa-
thology, has been shown to be associated, for instance, with higher levels of apoptosis [64,77].
Thus, maladaptive states involving hyperactive cells may facilitate and accelerate neurodegener-
ation (Figure 3). In the context of MS, early hyperactivity in remission may constitute the starting
point for subsequent neurodegeneration and transition to the chronic progressive phase of the
disease, exemplifying the notion of the selfish network, aiming to maintain stability even at ex-
pense of harmful long-term outcomes for neuronal survival. Accordingly, it is conceivable that in-
terventions aimed at rebalancing early network changes to avoid hyperactivity may prevent
hyperactivity-mediated neurodegeneration.

Network state dynamics across disease models and species can be formalized
by attractor states
How can the propensity of early network changes be leveraged for therapeutic interventions, and
is it possible to identify optimal time points for interventions? The time point of an abrupt change in
network performance can be perceived as a tipping point or – in the light of intervention – a win-
dow of opportunity. The notion of a disease tipping point is supported by anecdotal observations
in people with AD. Patients and their caretakers often report sudden changes in multiple perfor-
mance features such as memory performance or orientation, occurring on rather short time
scales within days [78,79]. Classically, these observations were regarded as physiological noise
within an overall linear decline of a specific performance feature. While the notion of tipping points
Figure 2. Early neuronal state shifts across levels. Rows in the figure illustrate changes at the level of single neurons
(upper row), networks (middle rows), and behavior (bottom row). Left column represents the healthy stage, middle column
represents an early dysregulation, and right column the situation following administration of network-rebalancing
interventions. At the single-neuron level, early maladaptive network state shifts can result in hyperactivity, which can be
detected in animal models using methods such as patch-clamp electrophysiological recordings as an increase in
excitatory postsynaptic currents, or two-photon calcium imaging as an increase of action-potential related calcium
transients [69,103]. At the microcircuits level, and at the network topology level, an altered degree of synchronized
network activity is seen in early dysregulation, resulting in a change in network topology. This can be assessed either in
animal models, for instance using optical imaging methods such as two-photon calcium imaging, in which the network
nodes are single cells, or in humans, for instance, using fMRI at the brain-wide level, in which the network nodes are brain
regions. At the behavioral level, an early dysregulation is often characterized by subtle changes for instance in anxiety-
related behavior, depicted in a schematic through place preference in the open-field paradigm. The percentage values
represent the respective time an animal spends in the center versus the edge of the open field. More time spent in the
center is indicative of an anxiolytic phenotype. Notably, therapeutic interventions aimed at the level of the network may
rebalance all three levels, from single neurons to behavior.
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Figure 3. Long-term shift of neuronal activity state to hyperactivity as a starting point for neurodegeneration,
amenable for interventions (A) Both hypoactivity and hyperactivity shifts an individual neuron from its
physiological activity state. To maintain network homeostasis, the respective neuron is prone to undergo activity-
dependent apoptosis leading to secondary neurodegeneration [64]. (B) Transitioning from timepoints T0 to T1 (see
Figure 1 for timeline) will be accompanied by the emergence of hyperactive cells, which will undergo activity dependent
apoptosis at timepoint T2. Early network rebalancing and hyperactivity-reducing intervention might prevent or delay
activity-dependent neurodegeneration.
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in disease progression remains to be further substantiated, and tested across diseases, we suggest
that such discrete functional changesmay be archetypical for the underlying trajectory that starts with
aberrant network pathophysiology and ends in the functional phenotype of the disease (Figure 4).
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Figure 4. Temporal dissociation between the dynamics of disease burden and functional decline suggests
network compensation as critical missing link. (A) On a single-subject level, particularly in the early presymptomatic
phase (T1 to T2), subtle function decline (blue line) is characterized as sudden shifts, followed by metastable plateaus
(insert), while network compensation (green line) increases and upholds network function until there is no further increase
in compensation possible (T3) and network function starts to decline rapidly (T4). Molecular burden accumulates and
leads to primary neurodegeneration (purple line). (B) Dynamical systems theoretic formulation of early discrete shifts in
function as a succession of plateaus of network states. (C) The systems trajectory (in light blue) moves through the
metastable network states. (D) The time of the switch between attractor states represents a window of opportunity (or
tipping point) in which subtle changes of the systems trajectory can lead to either regaining of the previous attractor state
or succession to another attractor state. Effective network-modulating, one-time therapies will require the identification of
these tipping points and the precise timing of therapeutic intervention.
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From the viewpoint of network functionality, plateau-like phases alternate with periods of vulner-
ability that constitute putative tipping points of network performance. Tipping points and plateau-
like phases of neuronal network activities are the characteristics of the early stages of disease
progression (Figure 4, T1 to T2 and insert).

The stability and the trajectory of network states as well as the transitions between states can
be described by the theoretical framework of dynamical systems theory [80]. This mathemati-
cal concept was first introduced to biology in the field of population dynamics, studying pred-
ator–prey systems [81]. Dynamical systems theory modeling of predator–prey dynamics
formalizes this process through coupled differential equations, in which the change of prey
population is dependent on the number of predators, which in turn is dependent on the number
of prey. Solving these equations numerally results in an oscillatory trajectory for predator and
prey, yet, changing the parameters can result in complex systems behavior. Multidimensional
systems; that is, coupled differential equations with multiple parameters with corresponding
multidimensional parameter spaces can result in trajectory dynamics with stable and self-
stabilizing solutions (attractors), as well as unstable solutions (repellers) and semistable solu-
tions (saddles) [82]. Yet, how can the mathematical framework of dynamical systems theory
be applied to neuronal network states? A network is commonly topologically described as con-
stituting of nodes and edges [83]. As a first step, we need to transition from this topological
view of networks to a network-state-centered approach. Even in the simplified view where
each neuron has a binary functional state of either 0 or 1, given that each neuron may have
up to ~10 000 synaptic partners, the number of potential states even of a local network of a
few thousand cells is immense. Yet, the number of observed network states that are metasta-
ble over time is limited, and drastically smaller compared to the number of possible states, and
hence can be viewed as a limited set of discrete states [84]. This allows for a dimensionality re-
duction, transitioning from neuronal space to parameter space, describing most of the variance
of the behavior of the system in time. In a simplified view, these parameters governing the net-
work states could constitute the molecular burden of disease, the network compensation, and
the functional (behavioral) outcome (Figure 4A). In a second step, we can now model the inter-
action between these parameters as coupled differential equations. Lastly, the solution of these
coupled differential equations results in a parameter landscape, which can contain attractors.
Time is now encoded as the trajectory of the system, moving through the parameter landscape
(Figure 4C–E) [85]. Within certain boundaries, deflections of the systems trajectory will lead to a
return of the dynamic system to the given state. This fits well with the observed systems perfor-
mance with plateau phases of network function interleaved by rather sudden quantal shifts.
When changes are substantial enough, when maladaptive load sums up or when strong risk
factors hit the system in a vulnerable state, the network crosses the boundaries and transitions
into a different attractor state associated with a change in functionality (Figure 4) [86,87]. In this
model, a short-term intervention, applied exactly at the time of transition, can push back the
network into its original state [88–90]. In the forementioned study on network dysregulations
in an MS model, a one-time injection of TNFα antibody in remission stage restored the func-
tional network state of the local neuronal microcircuit in the visual cortex to a state
nondiscriminable from the preinduction state, indicative for the local network re-entering or
being pushed back to the preinduction attractor [64]. Interventions aimed at achieving an
adaptive attractor which is beneficial for long-term outcomes can be designed in two ways:
(i) by changing the trajectory of the network; that is, pushing the system to another attractor
with a fixed attractor landscape (as depicted in Figure 4D); or (ii) changing the attractor
landscape itself, by modifying the dependency and relation between the parameters. The
latter would result in a different dynamical system described by different coupled differential
equations.
Trends in Neurosciences, Month 2024, Vol. xx, No. xx 9
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Outstanding questions
What is the relative contribution of the
maladaptive network state versus
disease-specific pathophysiological
challenges to neurodegeneration?

Which neuronal cell types govern the
maladaptive state transitions?

Are stress-related, episodic mental
disorders like depression or anxiety
disorders in essence disorders of mal-
adaptive neural network states, ame-
nable to short-term pharmacological
or physiological interventions?

What are the neurophysiological
mechanisms by which local maladaptive
network states spread in space and
time?

Which methodological advances need
to be achieved for personalized
network-informed interventions?

Can the attractor-like dynamics of early
network changes be exploited for ad-
vancing therapy?

Which neuromodulation techniques are
most efficient in shifting the network to
an attractor more favorable for long-
term neuronal survival?
Ramifications of the attractor state concepts for later disease stages
An important question is how a network finds its way into a new stable attractor state when mo-
lecular or cellular factors have forced it out of the original, healthy stage? We propose that a net-
work can adopt stable states only within a given parametric space [91]. This parametric space is
defined by borders built by the network itself. The borders are defined by various factors including
anatomical network connectivity, age, and developmental stage, but also by risk factors that in-
fluence the network [79]. Such risk factors include for instance genetic susceptibilities, immuno-
logical challenges, and previous illnesses. These boundaries could also be determined by the
accumulated maladaptive load, and by the molecular trajectory of the disease. Perhaps the
most critical and dynamic boundary is determined by the remaining, still functional units of the
network. In later stages of neurodegenerative disorders, the sparsification of the network caused
by the loss of neurons leads to an ever-decreasing parameter space for adaptive attractors. We
consider this time point as the breakdown of compensatorymechanisms in which the solutions of
the neuronal networks to retain functionality become increasingly limited. The network attains a
state that can no longer support normal functioning at the organismic level (Figure 4, between
T4 and T5).

Towards network resilience
Understandingmechanisms of network compensation and characteristics of tipping points could
help redefine pathogenic mechanisms of neurodegenerative and neuropsychiatric diseases and
might pave the way for innovative paths for therapy. In the proposed framework, the progression
of a neurological disease can be defined as the breakdown of compensatory mechanisms as
neuronal networks transition from one transitory state to the next; each of which represents a
temporary solution that may vary among subjects and brain regions [58]. This raises the question
of whether the disease onset is characterized by the activation of previously dormant compensa-
tory processes, or alternatively whether these compensatory processes are the same homeo-
static mechanisms that continuously maintain normal physiological neuronal network functions.
It is well established that the brain is persistently active. This ongoing activity is critical to contin-
uously fine tune and scale synaptic interactions that are continuously changing due to neuronal
plasticity [92,93], as well as learning and memory [94–97]. Neuronal network activity and neural
network states by themselves are likely agnostic to the causes of change in intrinsic and synaptic
mechanisms, and a given network activity is not necessarily different for a physiological process
like learning andmemory, a metabolic change caused, for example, by ischemia or a pathological
change caused by a genetic mutation.

Neural networks on levels of network topology; that is, from synapses and microcircuits to
macrocircuits and whole brain networks, may have evolved to find individual solutions when fac-
ing adversity [98]. In that, the neuronal network in themselves can be seen to be resilient [99–102].
However, resilience of the neural network is limited. If the network assumes maladaptive
states; that is, involving hyperactive neurons, it is driven further from its physiological state, sur-
passing the limits of network resilience.

Concluding remarks and future perspectives
We suggest that the trajectory of network function, governed by the principle of a selfish network,
is temporally and spatially decoupled from the underlying molecular and cellular pathophysiology.
These maladaptive network states represent a distinct pathophysiological entity, which can be
assessed for instance using recordings of local spontaneous activity as a measure of network in-
tegrity, and the dynamics of the network behavior can be formalized as attractor states. This may
have implications for neurodegeneration-preventing interventions. In designing such interven-
tions, particularly early intervention, two distinct potential pathomechanisms need to be
10 Trends in Neurosciences, Month 2024, Vol. xx, No. xx
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considered: (i) neuronal cell loss can be induced by primary disease-specific cytotoxic patho-
physiological events; and (ii) as put forward in this Opinion, neuronal cell loss can result from a
second pathomechanism involving hyperactivity-mediated apoptosis as the consequence of a
maladaptive network state. Therefore, it is hoped that this perspective may open up new avenues
for network-state informed, individualized, and regionalized intervention schemes.
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