

November 30, 2023, Toulouse, France

Al-based aspiration detection in Flexible Endoscopic **Evaluation of Swallowing: An explainable Al approach**

Jürgen Konradi¹, Milla Zajber¹, Ulrich Betz¹, Philipp Drees², Annika Gerken³, Hans Meine³ ¹Institute for Physical Therapy, Prevention and Rehabilitation, University Medical Center Mainz, Germany, ³Fraunhofer Institute for Digital Medicine MEVIS, Germany

Flexible Endoscopic Evaluation of Swallowing (FEES) is considered a gold standard in dysphagia diagnosis, but is prone to human error. This is demonstrated by an improvable interrater reliability (~.8) for aspiration detection [1]. An Al-based tool could support this. Apart from one further approaches exist, which mostly have black box properties, because they do not explain their model output (identification of an aspiration) transparently. This makes it difficult to trust such model decisions. Our goal was to introduce an explainable artificial intelligence (XAI) approach to detect aspiration in FEES [3].

Proof-of-Concept study based on a retrospective data analysis of FEES videos. By annotating a total of 1330 image frames (2895 were labeled as not showing the glottis) in 92 videos (50 with aspirations) (see Table 1), an AI (CNN, U-Net) was trained to segment relevant anatomical structures (vocal cords and glottis) as well as to detect and visually highlight aspirations (see Fig. 1).

During the training, the curves of the learning progress for glottis and vocal cord segmentation (Jaccard score 4), where the AI does not learn until about 19,000 iterations. After the rise of Jaccard score 4 (aspiration loss curve progresses to decline. The best model performance (highest mean Jaccard score) is reached at 32,000 iterations (see Fig. 2), building the tests, the AI successfully detected the glottis and vocal cords, but was not yet able to reach an expert level in the detection of aspirations (F1 score = .632) (see Fig. 3 and Table 2). Selected video frames in Figure 4 demonstrate this heterogeneity of results. As a means for post-hoc interpretation of the model outcome by the examiner, we implemented a concept of identifying meaningful frames in sequences. Therefore, an automated video analysis applies the CNN to an entire video to create a new video in which all AI-based segmentations and detections of aspirations are drawn into all frames of the video sequence (Fig. 5), serving as a first visual aid for key frames.

Figure 2: Loss curves of training (blue) and validation (red) as well as validation Jaccard scores (turquoise = mean of all; 1/dotted = segmentation of glottis; 2/dashed = segmentation of vocal cords; 4/dashed and dotted = detection of aspiration) show overlaps with the references. The vertical line shows the moment of the optimally working model.

🔳 SCAN ME

For the first time we have introduced an XAI that has been trained to detect aspiration in endoscopic swallowing videos. Although the recognition performance still needs to be optimized, our architecture leads to a final model that explains its evaluation by finding meaningful frames with relevant aspiration events and by highlighting the presumed bolus, thus making it applicable for clinical use. Further research will be necessary to enhance the model performance and to develop a real time tool for bedside use. After implementation of this tool in a FEES software, it will aid endoscopists to improve accuracy (thereby potentially saving lives), shorten the duration of the administration, and altogether safe costs as positive contributions for healthcare.

Background and Aim

Mothod

ble 1. Distribution of ar	FEES Video Annotation Not for clir Image: Second state of the second	clinical uset				
Al data subset	Segmented frames	Frames with aspiration	Frames not showing glottis	 ['open', 'obscured'] Vocal Chords #22 Aspiration #22 slurry Glottis ROI #23 ['open'] Vocal Chords #23 		
training	1029	424	2220	 Aspiration #23 slurry Glottis ROI #24 ('open', 'obscured') 	R	
validation	103	17	186	 Vocal Chords #24 Aspiration #24 slurry 	Drawn structures and cases of aspiration	
test	199	63	489	Image: Second state of the second s		
				 Aspiration #25 slurry Glottis ROI #26 ('open'] 		

Results

Figure 3: Confusion matrices with predicted and true labels (0 = negative / 1 = positive) for aspiration detection for training , validation (b), and testing (c) with heat-map scales for result interpretation (right in each case).

Table 2. Metrics for aspiration detection for all data sets.

Metrics	Training	Validation	Test
Precision	.955	.500	.706
Recall	.898	.588	.571
F1-Score	.925	.541	.632

Discussion and Conclusions

Interprofessional Study Center of Motion Research

Examples Figure segmentation results in the test set across different videos: (a-c) high references overlap between and Al-based (drawn (dotted) through) segmentation in different states (open, closed) and light conditions, (d) segmentation errors of partially visible glottis close to the image edge, (e) correct detection of aspiration, (f) missed detection of aspiration, (g) false positive detection of aspiration, (h) false positive segmentation of glottis and vocal cords on frame without visible glottis.

Figure 5: Visual aids to find meaningful frames for interpretation of model output. Screenshot of AI-based segmentation and detection of aspiration results (upper left) respective normal view (upper right). Timeline and timeline zoom with a curve displaying the number of pixels for the segmentation tasks and the detected aspiration (below). Vertical line indicates the point in time.

Curtis JA, Borders JC, Perry SE, Dakin AE, Seikaly ZN, Troche MS. Visual Analysis of Swallowing Efficiency and Safety (VASES): A Standardized Approach to Rating Pharyngeal Residue, Penetration, and Aspiration During FEES. Dysphagia. 2022;37(2):417-35. 2. Weng, W., et al., Expert-level aspiration and penetration detection during flexible endoscopic evaluation of swallowing with artificial intelligence-assisted diagnosis. Sci Rep, 2022. 12(1): 21689.

3. Konradi, J., et al., AI-Based Detection of Aspiration for Video-Endoscopy with Visual Aids in Meaningful Frames to Interpret the Model Outcome. Sensors, 2022. 22(23): 9468.

Figure 1: Annotation example with drawn structures of vocal cords (red), glottis (blue) and cases of (vellow) aspiration the frameusing labeling tool (screenshot).

References