
Towards a Better Understanding of Spinal
Differences Between Healthy Subjects

and Subjects with Back Pain Using Explainable
Artificial Intelligence (XAI)

Carlo Dindorf1(B) , Jürgen Konradi2 , Claudia Wolf2 , Bertram Taetz3 ,
Gabriele Bleser1 , Eva Bartaguiz1 , Johanna Kniepert2 , Philipp Drees2 ,

Michael Fröhlich1 , and Ulrich Betz2

1 Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
carlo.dindorf@sowi.uni-kl.de

2 Universitätsmedizin Johannes Gutenberg-Universität Mainz, 55131 Mainz, Germany
3 German Research Center for Artificial Intelligence, 67663 Kaiserslautern, Germany

Abstract. Using Surface Topography data of stance measurements this study
classifies 25 healthy subjects and 32 subjects with back pain using machine learn-
ing algorithms (Logistic Regression, Support Vector Machine, Random Forest).
Differentmetric learning approaches (NeighborhoodComponentsAnalysis, Local
Fisher Discriminant Analysis, Large Margin Nearest Neighbor) were applied to
check if they lead to improved classification performance. Interpretations are per-
formed using the Explainable Artificial Intelligence (XAI) tool SHapley Addi-
tive exPlanations (SHAP). The best results are obtained using Logistic Regres-
sion without prior performing a metric learning approach (MCC = 0.27, AUC =
0.71). Hence, a low correlation between predicted class and actual class is present.
Results indicate that subjectswith back pain exhibit a different posture than healthy
subjects. The data driven approach could be useful to give clinicians and therapists
an objective orientation and to individually adapt therapymeasures. As a next step,
the use of dynamic spinal data for classification should be evaluated.
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1 Introduction

Surface Topography allows the measurement of the spine, both static and dynamic,
without the usage of invasive, radiation-based approaches, or extensive preparation [1].
Back pain is of high social, clinical, and economic relevance. The extent towhich healthy
people can be distinguished from people with back pain based on spinal data is unclear
[2]. Data driven approaches and the classification of pathologic characteristics proofed
useful for giving an objective orientation and finding discriminative group specific dif-
ferences. The usage of Explainable Artificial Intelligence (XAI) has especially shown
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to be useful in understanding individual pathologic differences and is therefore of high
relevance in the context of personalized medicine [3]. Therefore, we want to check if
classification of subjects with back pain and healthy subjects is possible and get insights
into underlying biomechanical differences using XAI. Further, we want to check, if met-
ric learning (mapping objects into an embedded space through learning a representation
function) improves classification accuracy.

2 Methods

Static data of 25 healthy subjects (13 female, 12 male) and 32 subjects with back pain
(18 female, 14 male) was recorded. For each subject, 12 recordings were used. 55 static
parameters (for a detailed description see [4]) were used for modelling (Pelvic Obliquity
[°], Pelvic Torsion (dimples) [°], Pelvic Inclination (dimples) [°], Pelvic Rotation [°],
orientation of VP, T1-T12, L1-L4 in all planes [°]). Outliers were detected and removed
using Isolation Forest algorithm (100 base estimators). Leave One Group Out Cross
Validation was used for evaluation of three different classifiers (Logistic Regression
with L1 regularization, Support Vector Machine with Radial Basis Function kernel,
Random Forest with 100 trees). Standardization was performed based on the respective
training set by removing the mean and scaling to unit variance. Due to imbalanced data,
Synthetic Minority Oversampling Technique (SMOTE) was performed. Accuracy for
the use of different metric learning approaches (Neighborhood Components Analysis,
Local Fisher Discriminant Analysis, Large Margin Nearest Neighbor) was compared.
SHapleyAdditive exPlanations (SHAP)wasused as anXAI tool formodel interpretation.
Calculations were performed in Python (Python Software Foundation, Wilmington, DE,
USA).

3 Results

The overall best results are obtained using Logistic Regression with L1 regularization
without prior performing a metric learning approach (see Table 1; MCC = 0.27, AUC
= 0.71). Looking at the most important features for the correctly classified samples
shows that the features map characteristics in all body planes (sagittal plane: T3, T5,
T6, VP; frontal plane: VP, T4, T6, T8; transverse plane: T3, T2). Figure 1 shows the
top three features and their SHAP values. Looking at T3 in sagittal plane, values under
approximately 20° indicate an effect towards the class of healthy, over20° for the class
of subjects with back pain. For T3 in transverse plane, values under approximately 0°
indicate the class of healthy, over 0° the class of subjects with back pain. The other way
around, values under approximately 0° indicate an effect towards the class of subjects
with back pain for VP in frontal plane. Values over approximately 0° indicate an effect
for the class of healthy subjects. SHAP values can also be used for local interpretations.
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Table 1. Classification results for the use of the three classifiers aswell as themetric learning (ML)
approaches. LR = Logistic Regression, SVM = Support Vector Machine, RF = Random Forest,
NCA = Neighborhood Components Analysis; LFDA = Local Fisher Discriminant Analysis;
LMNN = Large Margin Nearest Neighbor; AUC = Precision-Recall Area Under Curve, CM =
Confusion Matrix

ML LR SVM RF

MCC AUC CM MCC AUC CM MCC AUC CM

– 0.27 0.71 194 106 0.05 0.60 128 172 0.01 0.55 128 172

144 240 144 240 139 245

NCA 0.23 0.70 185 115 0.02 0.55 128 172 0.11 0.59 117 183

146 238 157 227 111 273

LFDA 0.06 0.62 164 136 0.20 0.62 176 124 0.09 0.60 146 154

188 196 148 236 153 231

LMNN 0.23 0.75 178 122 0.03 0.61 222 78 0.15 0.65 151 149

140 244 275 109 135 249

Fig. 1. SHAP values in dependence of the original feature values for the three most important
features. A negative SHAP value indicates an effect towards the class of healthy subjects, a positive
value an effect towards the class of subjects with back pain.
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4 Discussion

Predicted class and actual class are only weakly correlated when using stance data. No
total improvement of the performance is present using the current studies metric learning
approaches. Results indicate that subjects with back pain exhibit a different posture than
healthy subjects. However, the differences seem relatively small, which results in low
discriminative power of the features. Interpretation of the results should therefore be
done with caution.

Thoracic vertebrae and VP show the overall highest impact for the classification
task. Healthy and subjects with back pain are therefore particularly different regarding
the thoracic vertebrae and the VP according to the current study’s findings.

The demonstrated data distribution for the class of healthy subjects and those with
back pain (Fig. 1) shows that especially around the mentioned limit values, SHAP values
are broadly spread and indicate an effect often for both classes. The more the feature
values are distant from the limit value, the clearer the effect for a certain class.

Limitations arise through the relatively small sample of subjects. Therefore, dif-
ferences could also be due to the sample and not due to actual pathologic differences
between the groups. An expansion of the sample is therefore necessary for following
studies.

5 Conclusion

The current data driven study indicates prevalent spinal differences between healthy
subjects and subjects with back pain based on static data. As a next step, the use of
dynamic spinal data should be evaluated. The data driven approach could be useful to
give clinicians and therapists an objective orientation and to individually adapt therapy
measures.
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