

ROTARY SPINAL DYNAMICS IN GAIT – REFERENCE DATA AND FUNCTIONAL DESCRIPTIONS BASED ON SURFACE TOPOGRAPY

Ulrich Betz¹, Janine Huthwelker^{1*}, Jürgen Konradi¹, Claudia Wolf¹, Ruben Westphal², Irene Schmidtmann², Patric Schubert³, Philipp Drees⁴

¹ Institute of Physical Therapy, Prevention and Rehabilitation, University Medical Center of the Johannes Gutenberg University Mainz, Germany
² Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Germany
³ Institute of Complex Health Sciences, Hochschule Fresenius, University of Applied Sciences, Idstein, Germany
⁴ Department of Orthopedics and Trauma Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Germany

* The data analysis is part of the dissertation of Janine Huthwelker

XXIX Congress of International Society of Biomechanics XXIX Congress of the Japanese Society of Biomechanics 2023 July 30th – August 3rd, Fukuoka, Japan

ROTARY SPINAL DYNAMICS IN GAIT – REFERENCE DATA AND FUNCTIONAL DESCRIPTIONS BASED ON SURFACE TOPOGRAPY

Ulrich Betz¹, Janine Huthwelker^{1*}, Jürgen Konradi¹, Claudia Wolf¹, Ruben Westphal², Irene Schmidtmann², Patric Schubert³, Philipp Drees⁴

¹ Institute of Physical Therapy, Prevention and Rehabilitation, University Medical Center of the Johannes Gutenberg University Mainz, Germany
² Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Germany
³ Institute of Complex Health Sciences, Hochschule Fresenius, University of Applied Sciences, Idstein, Germany
⁴ Department of Orthopedics and Trauma Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Germany

* The data analysis is part of the dissertation of Janine Huthwelker

- no conflicts of interest -

MotionLab DIERS Formetric III 4D™ analyzing system

Software adjustments and data management

- Implementation of the export tool
- Course of rotation across three gait cycles of selected vertebral bodies
- Implementation of foot pressure data as variables in the raw data of the spinal model

Transformation in a Standardized Gait Cycle

- Linear transformation of the number of observations onto a scale from 0-100
- Averaging of data from three gait cycles
- Interpolating splines are applied to smooth curve progressions

Framework Project

 "The rasterstereographic investigation of intersegmental spinal movement pattern in healthy participants according to phases of gait at different walking speeds - a cross-sectional study"

Participants:

•201 structurally and functionally healthy participants•aged 18 to 70 years

Digression: The functional model of spinal dynamics

T7 stays orthogonal to the direction of movement and is "dynamically stabilized"

(Gregersen & Lucas, 1967; Suppé & Bongartz, 2013)

Gregersen & Lucas, 1967

(a)

ТЗ

13

Transformation in a Standardized Gait Cycle

- T7 stays orthogonal to the direction of movment and is "dynamically stabilized" (Gregersen & Lucas, 1967; Suppé & Bongartz, 2013)
- This segment (T8) shows the least rotatory motion compared to above and beneath (Needham et al., 2016)

T8

12 0.5 Difference between S1 & S2 (*) TOALE. 3.15 18 PS SWING 12 & S2 () ICALR SWING 10 10 0.6 Axial rotation (°) 0.4 C S 0.2 S 0.4 6 0.2 -0.2 -0.4 0.6 -0.8 Differe -1 10 20 3.5 45 50 03 80 90 100 % Gait cycle % Gait cycle Session 1 ---- Session 2 • Difference (S1 versus S2) -Session 1

T3

L3

Existence of a "Point of Intersection" can be postulated at ~ T7

Maxima pelvis and lumbar spine occur sequentially with similar amplitudes

 Maxima of thoracic spine occur nearly simultaneously but with very different amplitudes

Most rotation at T7

Mean courses in SGC with 5% an 95% percentiles

Individual courses of spinal rotary motion during gait at 5 km/h within SGC

Individual courses of spinal rotary motion during gait at 5 km/h within SGC

Scatter plots of maxima (left, blue) and minima (right, red) within SGC

 high pelvic and lumbar individuality

Point of Intersection: not static but dynamic!

Limitations

- Surface topography is sufficiently investigated for static measures and therefore was found to be valid and reliable (Frerich et al., 2012; Mohokum et al., 2015; Tabard-Fougere et al., 2017)
- For dynamic measures no formal validation beyond face validity has been possible yet.
- Influence of possible soft tissue artifacts (skin displacement, muscle activity, movement of the scapula) has to be taken into account, especially during high walking speeds.

Summary

- A differentiated analysis of spinal rotary motion (trunk surface) while walking is possible by surface topography.
- most rotation at T7
- Maxima of pelvis and lumbar spine occur sequentially with similar amplitudes
- Maxima of thoracic spine occur nearly simultaneously but with very different amplitudes
- high pelvic and lumbar individuality
- dynamic point of intersection

Thank you for your interest

JGU UNIVERSITĀTS**medizin.**

Our Expertise for Your Health

ulrich.betz@unimedizin-mainz.de