

THE FUNCTIONAL STATUS AND ITS PREDICTION ONE YEAR AFTER HIP OR KNEE REPLACEMENT

Ulrich Betz, Laura Langanki*, Jürgen Konradi, Ruben Westphal, Philipp Drees, Sebastian Kuhn

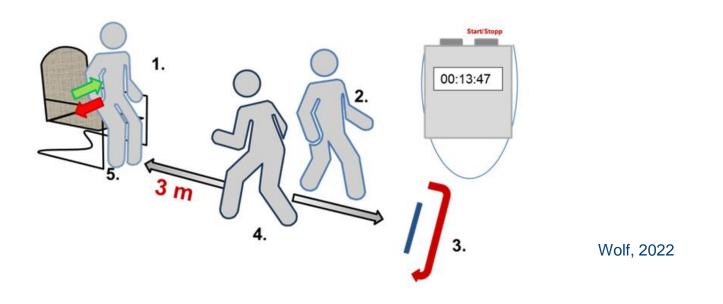
ISPRM World Congress 2023, Cartagena

* The data analysis is part of the dissertation of Laura Langanki

THE FUNCTIONAL STATUS AND ITS PREDICTION ONE YEAR AFTER HIP OR KNEE REPLACEMENT

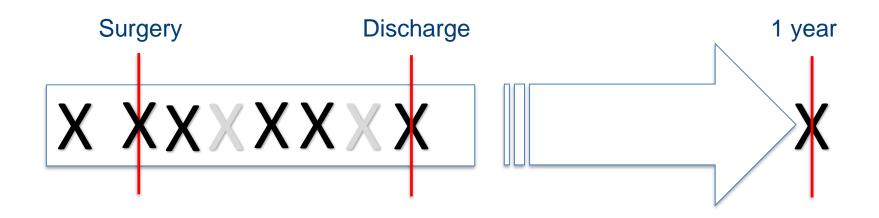
Ulrich Betz, Laura Langanki*, Jürgen Konradi, Ruben Westphal, Philipp Drees, Sebastian Kuhn

- no conflicts of interest -


PROMISE Trial

- "Process optimization by interdisciplinary and cross-sectoral care using the example of patients with hip and knee prostheses"
- Recommendations of the Enhanced Recovery After Surgery (ERAS) Society with some extensions
- 3 German hospitals offering different levels of care
- 5 cooperating rehabilitation centers
- subanalysis: n=507 participants: TKA (n=268), TKA both (n=40), THA (n=199)

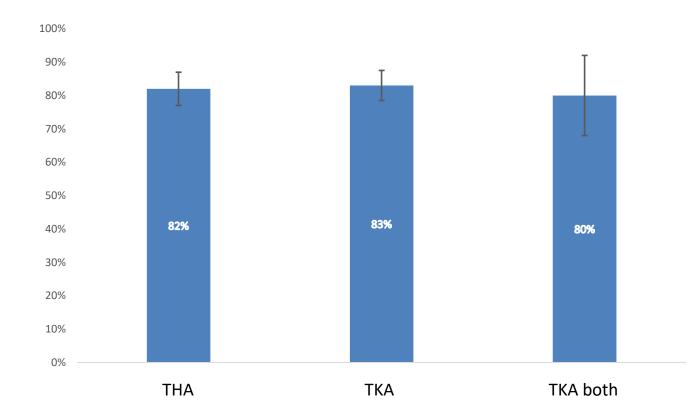
Variables / Questionnaire	Construct / Expression			
Patient characteristics				
Comorbidities	Medical history form: musculoskeletal system, further information			
ASA classification	Health status of the patients Expression / Score (1-6)			
Body Mass Index (BMI)	Body weight (kg) / height squared			
Gender	Female, male			
Marital status	Single, married, divorced			
Age	Date of birth, date of operation			
Psychological barriers / factors				
PHQ4	Anxiety and depression, sum score (0-12)			
LOT-R	Optimism and pessimism			
Organisat	ional factors / ERAS features			
Patient seminar	Participation (yes/no)			
Oslo Social Support Scale (OSSS)	Extent of social support			
Mobilisation on the day of surgery	Yes/No No = Reasons why not possible (free text)			
Functional factors				
Timed Up and Go Test (TUG)	Physical mobility, time in seconds			
Resources	Use of aids in the TUG test Expression: None, walking stick, UAGS, walker, walking frame			
Numerical Rating Scale (NRS)	Pain			
Staffelsteinscore Range of motion/strength	Subscore range of motion/strength			


Timed Up and Go – Test (TUG)

- Functional Mobility
- Very good Intrarater-Reliability (ICC = 0.92) and Interrater-Reliability (ICC = 0.91/0.87)
- Independence / Secure Walking TUG ≤ **12 sec** (10 sec)

Timed Up and Go – Test (TUG)

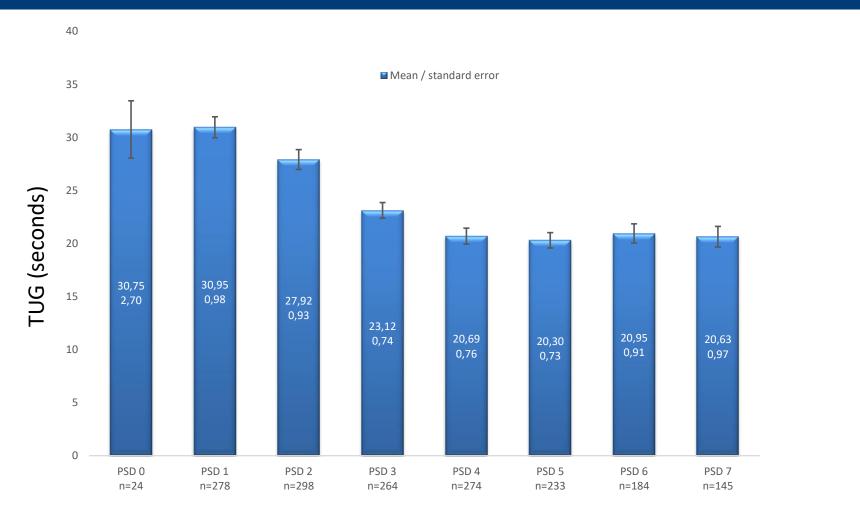
- Functional Mobility
- Very good Intrarater-Reliability (ICC = 0.92) and Interrater-Reliability (ICC = 0.91/0.87)
- Independence / Secure Walking TUG ≤ **12 sec** (10 sec)


PROMISE Trial - cohort

		N	Minimum	Maximum	Mean value	Std. deviation
Hip joint	٨٥٥	199	27	92	67.14	11.82
	Age	199	21	92	07.14	11.02
(n=199 / 39%)	BMI	197	15.95	54.03	28.22	6.14
	Length of stay_days	199	3	30	6.19	2,90
	ASA	198	1	4	2.51	.62
	Valid values	196				
Knee joint (n=268 / 53%)	Age	268	22	90	66.75	10.97
	BMI	268	18.94	52.88	29.93	6.34
	Length of stay_days	268	3	84	6.26	5.39
	ASA	265	1	4	2.43	.59
	Valid values	265				
Knee joint on both sides	Age	40	54	81	68.15	7.954
(n=40 / 8%)	BMI	40	21.45	48.44	29.54	6.06
	Length of stay_days	40	1	14	6.95	2.54
	ASA	40	1	3	2.42	.59
	Valid values	40				

Mobilization on day of surgery

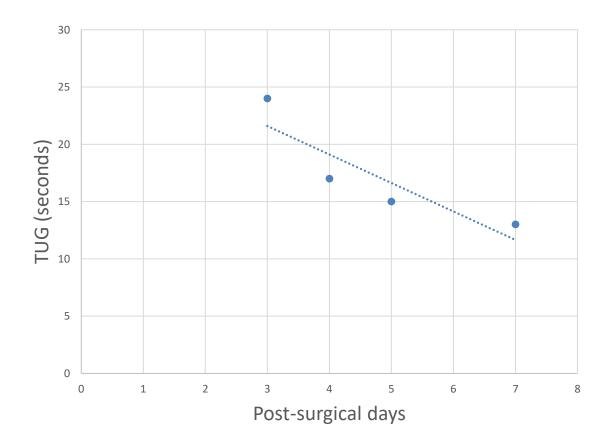
417 (82%) of patients could be mobilized on the day of surgery



Reasons for "Mobilization on day of surgery" not possible

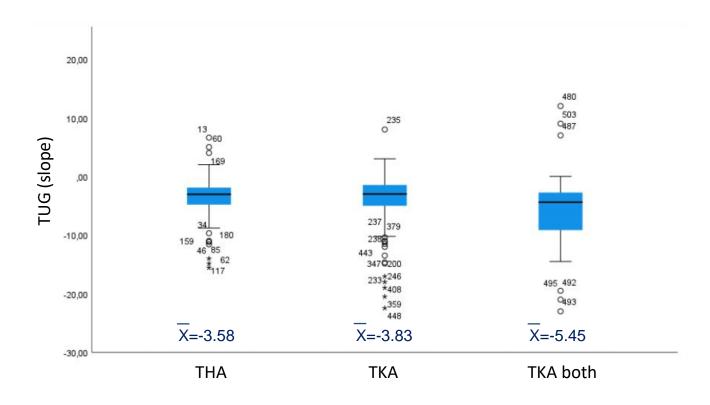
Reasons	Frequencies (n=90 / 100%)
Organizational reasons	38 / 42%
Late-effects of anesthesia (sensomotoric deficits)	21 / 23%
Circulatory problems	11 / 12%
Other (pain, complications)	8 / 9%
Nausea / vomiting	7 / 8%
Not specified	5 / 6%

TUG in the course of the postsurgical days

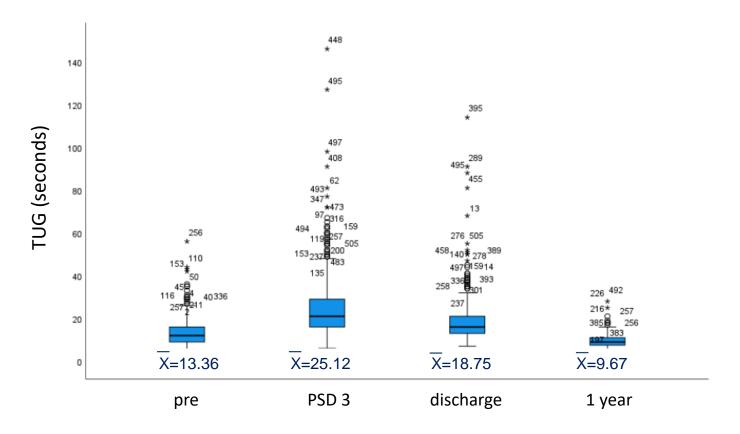


PSD = post-surgical day

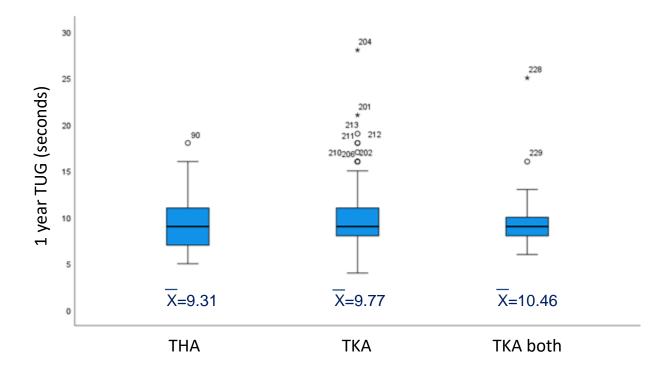
TUG in the course of the postsurgical days


The slope of the regression line: Mean value X=-3.85 (SD=3.9)

TUG in the course of the postsurgical days


 The slope of the regression line: Mean values THA X=-3.58, TKA X=-3.85; TKA both X=-5.45

TUG at different time-points


All joint groups show significant mobility improvements after one year

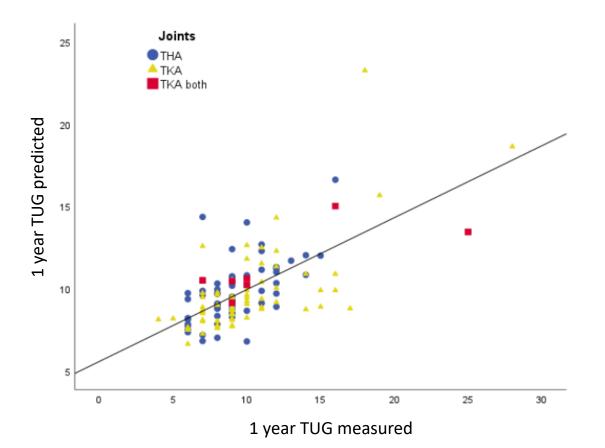
TUG at 1 year FU

 1 year TUG: outliers (from 18 sec.) and 2 extreme values (from 25 sec.) All patients had at least 4-9 comorbidities and/or complications.

- TUG prediction 1 year by **multiple linear regression analysis**
- stepwise variable selection excluded the following variables: BMI, gender, ASA (physical health status), SSS (ROM/strength) OSSS (social support), LOT-R (optimism/pessimism), aid use, exertional pain and the remaining comorbidities

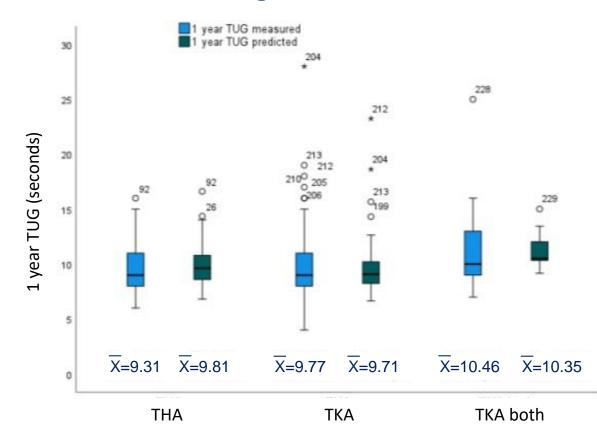
- Model A statistically significant p < .001
- Predictors: Pre-TUG, age, comorbidity: rheumatism
- Coefficient of determination: R²=.54 (corrected R²=.53): 53% of the variance of the 1 year TUG value can be predicted by the predictors

Model A	Non-standardized coefficients Coefficient of regression B	Standardized coefficients Beta	Significance
(Constant)	2.092		
Pre TUG	0.305	0.59	0.00
Rheumatism	3.509	0.27	0.00
Age	0.055	0.18	0.02


- Predictors: Pre-TUG, age, comorbidity: rheumatism
- For example: Pre-TUG = 35 seconds; age = 70 years ; rheumatism = no
- Prediction for TUG 1 year by Model A =
 2.092 + [0.305 x (35)] + [0.055 x (70)] + [3.509 x (0)] = 16.61 sec

(measured TUG 1 year = 16 seconds)

TUG prediction models - Model A


Model A: Pre-TUG, age, rheumatism

TUG prediction models - Model A

Model A: Pre-TUG, age, rheumatism

- Model B without comorbidities (n=117) statistically significant p < .001
- Predictors: Pre-TUG, age, PHQ-4 (anxiety/depression)
- Coefficient of determination: R²=.48 (corrected R²=.47): 47% of the variance of the TUG 1 year value can be predicted by the predictors

Model B	Non-standardized coefficients Coefficient of regression B	Standardized coefficients Beta	Significance
(Constant)	0.84		
Pre TUG	0.31	0.59	0.00
Age	0.06	0.21	0.01
PHQ4	0.24	0.18	0.01

Take Home

- in an ERAS setting, most patients can be mobilized on the day of surgery
- the most important reason for non-mobilization are organizational ones
- functional mobility improves rapidly and continuously up to 4 days after surgery
- after one year, the functional mobility for TKA, TKA both and THA is significantly improved compared to the preoperative status and is on average above the cut off for unsafe walking
- functional mobility for TKA, TKA both and THA can be predicted on the basis of preoperative parameters with a medium power

Thank you for your interest

JGU UNIVERSITĀTS**medizin.**

Our Expertise for Your Health