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Abstract—Surface topography systems enable the capture of
spinal dynamic movement. A visualization of possible unique
movement patterns appears to be difficult due to large intra-
class and small inter-class variabilities. Therefore, we investigated
a visualization approach using Siamese neural networks (SNN)
and checked, if the identification of individuals is possible based
on dynamic spinal data. The presented visualization approach
seems promising in visualizing subjects in the presence of
intraindividual variability between different gait cycles as well
as day-to-day variability. Overall, the results indicate a possible
existence of a personal spinal ‘fingerprint’. The work forms the
basis for an objective comparison of subjects and the transfer of
the method to clinical use cases.

Index Terms—Siamese Neural Networks, triplet loss, con-
trastive loss, surface topography, subject identification

I. INTRODUCTION

Biometric person identification is an important research field
that has many practical applications, with the general aim of
identifying persons based on unique biological characteristics.
Machine Learning has gainted increasing interest in the gait
research domain and several works have demonstrated the
utility of human gait for subject identification [17], [19], [35].
Regarding health-related sectors, subject identification and the
determination of similarities between subjects are of high
research interest, as are longitudinal comparisons of subjects
over time [20], [36]. However, large intra-class and small inter-
class variations of the human gait pose significant challenges
[19], [28]. Further, the amount of available clinical data is
often limited.

As a methodological approach for the respective charac-
terstics, deep metric learning via Siamese Neural Networks
(SNN), a special type of neural network, has showed promising

The presented abtract is based on a previously published work by [8].
Dataset B is part of the dissertation project of Friederike Werthmann.
LEVIA’20: Leipzig Symposium on Visualization in Applications 2022

results. SNN were able to learn from only few or even only one
training sample (one shot learning) of each class, respectively
[2]. The general aim is to put different samples further apart
from each other and similar samples nearer to each other
by learning discriminative embeddings [16]. Previous works
demonstrated, that SNN were able to extract meaningful,
robust and discriminative gait features [19], [33], [35], which
forms the basis for visualization, identification as well as
determination of similarities.

SNN were mainly applied in the field of computer vision
(e.g. [12]). Several clinical and health related studies can be
found in the literature (similarities of patients from electronic
health records [34]; disease severity evaluation and change
detection retinopathy of prematurity in retinal photographs and
osteoarthritis in knee radiographs [22]; prediction symptomatic
progression Alzheimer’s disease [1], automatic tracking of the
lumbar spine [23], and detection of brain asymmetries [24]).
To the best knowledge of the authors, the utility of SNN in the
context of biomechanical waveform data has not been analyzed
so far.

Therefore, our aim is to evaluate feature learning approaches
using SNN for reducing intra-class and increasing inter-class
variability for visualization of individual movement patterns
of the spine.

II. METHOD

A. Measuring method, subjects, and data

The DIERS formetric III 4DTM, DICAM v3.7.1.7 was used
to capture dynamic spinal movement by means of surface
topography (ST). The system works without exposure to
radiation, which is particularly advantageous since repeated
scans are possible without any undesirable effects on human
health [3], [31]. Furthermore, it can be used in a relatively
time-efficient manner and potential sources of error can be



reduced, since only a few markers have to be set. In addition,
no particularly complex training of the staff is required, since
the measurements are relatively easy to carry out. Apart from
the need for dynamic recordings to be carried out on the
treadmill, the test persons are not directly influenced in their
natural gait behavior during the measurements.

The light-optical measurement of the back with the sys-
tem is based on (video) rasterstereography. Figure 1 shows
the system and the rough course of a measurement. For a
measurement, a light grid is first projected onto the textile-
free back of the test person using a projector and recorded
with a camera unit (60 Hz). The raster slide is built into
the projector and forms the stereo image pair together with
the camera image. Based on the curvature of the line, a
three-dimensional image of the surface topography of the
back is generated in accordance with photogrammetry. The
reconstructed dorsal surface is first described as 3D point
coordinates (x,y,z), which depend on the subject’s position
relative to the camera. Therefore, invariant shape parameters
(convex, concave, saddle-shaped) are determined, which are
independent of the relative position in space. The position in
relation to the camera or the rotation around the longitudinal
body axis should therefore have no influence on the results
[5]. Based on this, anatomical structures (vertebra prominens,
lumbar dimples) are determined from which further points can
be derived mathematically (e.g. the middle between the lumbar
dimples). Based on this information, conclusions can then be
drawn about the skeleton geometry including corresponding
3D movements from the vertebra prominens (C7) down to L4
and the pelvis. This is based on a correlation model according
to Turner-Smith [30] and Drerup [4], which describes the
relationship between the surface curvature of the body and
the alignment of the vertebras.

The data used contained measurements from 201 (Dataset
A) and 25 (Dataset B) healthy subjects (132/13 female,
69/12 male) while walking (2 and 4 km/h). The Dataset
B group was measured on three different days (Day 1,
Day 2, and 30 ± 7 days later). The reference data
was approved by the responsible ethics committee of the
Medical Chamberof Rhineland-Palatinate (837.194.16, 2018-
13607-Klinische Forschung) and registered with WHO (INT:
DRKS00010834, DRKS00014325). Missing data points were
interpolated using spline interpolation (maximum gap = 5
frames). Cycles with remaining gaps were dropped. After-
wards, the gait cycles were individually time-normalized to
101 time steps (from 0% to 100%) using cubic spline inter-
polation. Figure 2 shows an example of the time-normalized
movement patterns of two vertebras during a gait cycle.

B. Feature extraction and visualization

Dataset A was used for model training, Dataset B was
used for testing. This split was chosen because it allows
the model performance to be evaluated in the presence of
day-to-day variability (Dataset B). The reference data pool
for testing was formed by the measurements of the first
and second day for Dataset B as well as the samples of

TABLE I
RESULTS OF THE TOP FIVE EXTRACTED FEATURES USING THE THREE

APPROACHES. RANGE OF MOTION (ROM), MINIMA (MIN), AND MAXIMA
(MAX) REPRESENT THE FEATURE EXTRACTION USING SIMPLE

DESCRIPTIVE STATISTICS.

Contrastive Loss Triplet Loss ROM, Min, Max
Validation set 100.00 % 96.52 % 95.02 %

accuracy True: 402 True: 388 True: 382
False: 0 False: 14 False: 20

Test set 96.00 % 85.33 % 82.00 %
accuracy True: 144 True: 128 True: 123

False: 6 False: 22 False: 27

Dataset A. The measurements on day three of Dataset B
were used for testing. Similar to previous works [9], [27],
concatenated waveform data was used as input features for
the automatic feature extraction. Deep metric learning was
performed using Siamese Neural Networks using contrastive
loss [14] and triplet loss [32] as loss functions for optimization.
A Multilayer Perceptron Feedforward Neural Network (MLP)
was selected with two hidden layers. The network architecture
of the multilayer perceptron feedforward neural network and
the hyperparameters were determined manually (5555-neuron
input layer; 1000-neuron hidden layer 1; 100-neuron hidden
layer 2; 5-neuron output layer; rectified linear activation func-
tion, Adam optimizer). The same network architecture was
used for comparing the use of the contrastive loss to the triplet
loss function.

The results were compared with those using extracted fea-
tures based on an extraction using simple descriptive statistics.
Therefore, in the literature commonly applied operations (e.g.
[7], [29]) were used (range of motion, minima, and maxima).
For comparing feature subsets of the same size, sequential
forward selection using Euclidean distance for subject identifi-
cation was applied for ranking and selecting a feature subset of
the features based on simple descriptive statistics. The number
of selected features was set as equal to the fife. The input
feature sets were separately scaled to a range between zero
and one based on the training data.

Based on the extracted features, subject identification was
performed for further evaluation using Euclidean distance.
Therefore, the data sample in the reference pool with the
lowest distance was predicted as the person to be identified.

Finally, visualization of the learned discriminative embed-
dings was performed plotting the test subjects in a 2D space
after doing dimensionality reduction on the extracted features
with t-SNE [26].

III. RESULTS

Figure 3 shows the visualizations of the test set subjects in
a 2D space before and after performing feature extraction. A
separation between the subjects is observable. For example,
for the subjects C, G, and S, the respective gait cycles were
closer together compared to the t-SNE visualization of the
concatenated waveform data before the feature extraction.

Classification results are presented in Table 1. For the test
data, 100 % accuracy was obtained using the concatenated



Fig. 1. Schematic measurement procedure using the DIERS formetric system used in the MotionLab of the University Medical Centre of the JGU Mainz,
Germany. Image kindly provided by DIERS International GmbH.

Fig. 2. Exemplary visualization of the time-normalized sequence data for
T3 and T8 movement in the sagittal plane of the 25 test subjects. For every
test subject, one measurement of each walking speed is displayed. black = 2
km/h, red = 4 km/h

waveform data without performing feature extraction. The test
set accuracy was slightly reduced after the feature extraction.
The highest accuracy was present with the SNN using the
contrastive loss function, followed by the SNN with triplet
loss.

IV. DISCUSSION

The current study shows that the identification of individuals
based on dynamic movement patterns of the spine is possible.
The extracted features, especially for use with an SNN with
contrastive loss, seemed to reduce intraindividual variability
and make subjects more distinct. This is also surprising,
as the gait cycles of each subject were recorded at two
different speeds. In this way, the extracted features should map
movement patterns of the spine that show little variance or
are invariant over different gait cycles, speeds, and measuring
days. This results in a higher similarity between the gait cycles
per subject as well as better separation between the subjects
in the presented visualization.

Using extracted features, the accuracy was slightly reduced
compared to the use of the entire concatenated waveforms.
However, feature extraction is an important step toward im-
proving interpretability and the model’s accuracy, and for
preventing overfitting and reducing the computing power [21].
Based on the huge amount of data, direct interpretation of
the dynamic spinal data is hardly possible for humans. In line
with a previous study [7], a clinically relevant interpretation is
only adequately possible through the extraction of meaningful
features. If not only classification but also reduction of in-
traindividual variabilities, visualization as well as identification



Fig. 3. Visualization of the test set subjects in a 2D space before and after
performing t-SNE on the representations of the feature extraction approach
using the Siamese neural networks with contrastive loss function. The color
code as well as the different alphabetic characters map the individuals.

of individual movement patterns is important, a slight drop
in classification performance seems reasonable to achieve the
other goals.

Contrary to this study, previous research showed that an
SNN with triplet loss could learn better representations com-
pared to an SNN with contrastive loss [15]. Possible reasons
for the present results might be that the network architecture
was predetermined using contrastive loss and, therefore, was
not optimal for use with triplet loss. Furthermore, choosing
difficult triplet could be an essential step for further increasing
the model’s performance [13]. Future research should consider
and compare other network architectures, e.g. recurrent neural
networks or 1D convolutional neural network models in the
context of waveform data. As a promising alternative to the
t-SNE algorithm, the use of Uniform Manifold Approximation
and Projection (UMAP) [25] should be considered for future
works. Also, model interpretation using Explainable Artificial
Intelligence (XAI) should be considered for the precise iden-
tification of individual regions of the waveform data, which
are important for the identification task [6], [10]. Finally, the
inclusion of thermographic data should be considered, as these
can map aspects of the spine [18] as well as muscular factors
[11].

Regarding the comparison of healthy subjects and patients,
absolute group assignments often shorten the facts. The appli-
cation of the visualization approach and the determination of
similarity scores in health and patient data could be useful for
monitoring progress (e.g. during rehabilitation) or continual
changes.

V. CONCLUSION

Overall, the presented visualization approach seems promis-
ing in visualizing subjects in the presence of intraindividual
variability between the gait cycles of one day recorded at
different speeds as well as day-to-day variability. Finally, the
results indicate a possible existence of a personal spinal ‘fin-
gerprint’. A possible field of application is the monitoring or
detection of longitudinal changes (in physiology) in subjects.
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