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Abstract: Precise segmental spinal analysis during gait has various implications for clinical
use and basic research. Here, we report the use of Surface Topography (ST) to analyze three-
dimensional spinal segment movements, in combination with foot pressure measuring,
to describe individual vertebral bodies’ motion relative to specific phases of gait. Using
Statistical Analysis System (SAS) scripts, single files were merged into one raw data table
and were used to generate a standardized gait cycle (SGC) for each measurement, including
all measured gait cycles for each individual patient, with a spline function to obtain smooth
curve progressions. Graph templates from Statistical Package for the Social Sciences create
detailed visualizations of the SGCs. Previously obtained measurements from healthy
participants were used to demonstrate possible applications of our method. An impressive
inter-individual variability as well as intra-individual consistency of spinal motion is
shown. The transformation into an SGC facilitates intra- and inter-individual comparisons
for qualitative and quantitative analyses. In future studies, we want to use this method to
distinguish between physiologic and pathologic spinal motion. Artificial intelligence-based
analysis can facilitate this process. All tools and visualizations used are freely available in
repositories to enable the replication and validation of our findings.

Keywords: spine biomechanics; graph-based representation; motion analysis; surface
topography; rasterstereography

1. Introduction
Precise segmental spinal analysis during gait would have various implications for

basic research and clinical use, exemplarily in the context of low back pain (LBP). LBP
in the German population has a point prevalence of 25–40%, a 12-month prevalence of
60–70% [1], and a lifetime prevalence in the American population of up to 85% [2] in
adults. According to the German Medical Association [3], LBP is currently ranked as the
most frequent musculoskeletal disorder, with an annual cost of 3.6 billion Euros. Thus,
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companies and stakeholders have a strong interest in reducing such often work-related
diseases [4]. As many as 90% of LBP complaints have no anatomic structure abnormalities
that can be identified as the source of the patient’s pathologies [5]. Most of these occur
in motion [6]. Hence, static and structure-orientated diagnostic approaches like X-rays or
MRI cannot detect the etiology of pathology in the majority of LBP patients, meanwhile
incurring unnecessary costs. Therefore, systems for multidimensional motion analysis
are becoming instrumental in the diagnosis of unspecific musculoskeletal problems, as
they are able to provide additional dynamic and functional information for individualized
diagnoses [7], even though they do not provide ground-truth imaging, such as fluoroscopy
or dynamic X-ray imaging.

Even though this three-dimensional approach is popular for musculoskeletal prob-
lems of the pelvic–leg region, the spine and trunk are often neglected due to metrological
limitations [8,9]. For example, the assessment of each functional spinal unit requires the
application of three non-collinear markers per segment [9]. Due to the close anatomical
vicinity of adjacent vertebrae, unintended marker contact can cause significant measuring
artifacts. Furthermore, due to the variety of spinal segments, a complex preparation is
required, which is immensely prone to palpation bias and can result in measurement
error [8]. Even though current research recognizes the spine’s active role in balance and
locomotion dynamics [10], truncal measurements in instrumented gait analysis mostly
regard it as a rigid body [11], usually called the “passenger unit”, which is transported by
the “locomotor”, with no relevant contribution to ambulation [12]. Based on the described
limitations, there is little literature regarding three-dimensional segment-related spinal
movement during gait. Additionally, the results of the few existing reports are not com-
parable because of methodological differences, ranging from three-dimensional motion
analyses of isolated spinal segments to invasive measurement procedures [13–23].

The most valid method [19] uses markers to capture three-dimensional motion by
inserting bone pins under local anesthesia into the spinal processes of each lumbar vertebra
under the control of an image converter. This procedure can theoretically be considered a
gold standard [24]. However, due to the surgical invasiveness and the resulting radiation
exposure, this approach is inappropriate for use as a routine assessment in clinical as well
as in scientific practice. Furthermore, only very low amplitudes of spinal motion have
been observed, which may be either influenced by pain-induced inhibition of habitual
movement or by residual effects of local anesthesia.

Hence, the ability to measure the spinal motion of each single segment during gait
without extensive preparation or the usage of invasive or radiation-based measurement
approaches, however, is a valuable tool for clinical practice as well as basic research. It can
expand on our knowledge of the spine’s role in maintaining balance and upright posture
during gait, as well as provide further understanding of the underlying biomechanical
mechanisms behind unspecific musculoskeletal conditions, such as LBP [24]. Rasterstere-
ography (RS), more recently called Surface Topography (ST) [25], is a non-invasive and
reliable [26] alternative high-precision technique to analyze the shapes of surfaces [27],
even in 360◦ [28]. Resting upon back shape data and orientated on visible anatomical
landmarks, the Turner–Smith model [29] combined with other models [30–33] can be
used for the estimation of the segmental spine posture. Originally, it was used for static
or quasi-dynamic measurements during stance [25], specifically within the context of
scoliosis [34–37]. However, its use in the setting of degenerative disk disease has been
questioned [38]. More recently, dynamic measurements have been introduced [39]. Using
DIERS formetric’s standard software during gait analysis, its reliability to detect certain
measuring points (e.g., max of T4) at some point during the gait cycle has been demon-
strated (Gipsman et al., 2014) [40]. What former ST approaches lacked were the precise
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determination of spinal movement in direct relation to phases of gait during the gait cycle,
and subsequent standardization of data from various gait cycles to make data intra- and
inter-individually comparable, regardless of aspects confounded by walking speed or stride
length. As already demonstrated [41,42], we successfully further developed this method in
this direction.

In our approach, we utilized DIERS formetric as a means for gathering dynamic ST
measurements. The system generates 3D images of the surface, estimates corresponding
3D movements of the spine for each individual segment starting at vertebra prominens [30]
and ending at the pelvis [31], and features a treadmill with an embedded foot pressure
measuring plate to analyze ground reaction forces. This can be used to identify certain
moments in gait, as gait follows certain identifiable determinants [43]. According to the
common model [12], a gait cycle can be divided into two periods (60% stance and 40%
swing) and consists of eight total phases. The most relevant phases pertaining to this study
are Initial Contact (IC), which divides gait cycles, and Initial Swing (IS), which departs the
stance from the swing phase.

In this methodologic contribution, we aim to fully visualize and describe spinal
movement in direct relation to gait phases, thereby concentrating on spinal rotation. We
therefore used previously obtained measurements from healthy participants. First, we
describe the use of foot pressure measuring data to encode for the step and swing phases
as well as for complete gait cycles. Secondly, there had to be a modification of the system’s
export functions in order to synchronize spinal motion data with foot pressure measuring
data and combine them into the same raw data export. Since all exports are separate for each
measurement, the third task was to merge single export files to create a complete raw data
table. Finally, we were able to then standardize the combined raw data set of three or more
gait cycles by interpolating splines to make spinal motion analysis relative to gait cycles
intra- and inter-individually comparable. Together, this enables us to create oscillographs
of spinal movement for and across each gait cycle, resulting in interpretable depths and
precision for analyses. This analysis will address the described methods separately and
provide the developed solutions for all spinal movement oscillographs of individual gait
patterns as well as their standardized counterparts in several repositories [44–50].

2. Materials and Methods
In this methodologic contribution, we use previously obtained dynamic ST measure-

ments from 201 healthy participants (132 females, 69 males, aged 18 to 70) that have already
been used as a normative reference data pool. All of them had passed several functional
tests and very strict inclusion criteria [41]. They were taken with a 4D spine and posture
analysis device (DIERS Formetric III 4D™, DICAM v3.7Beta, Wiesbaden, Germany). It
projects structured light onto the textile-free back of the individual person. A camera unit in
defined positions records the movement with a frequency of 60 Hz. The software analyzes
all three dimensions of each individual measuring point (up to 150,000, depending on
body size) and generates a 3D image of the surface. The system then calculates [31] the
corresponding 3D movements for each spinal segment, starting at the spinous process of C7
and ending at the pelvis. Due to the low correlation accuracy between surface structure and
spinal position in the lower back area, L5 is not measured. Additionally, it is supplemented
by one rear axis and two lateral cameras that record a video signal, enabling a subsequent
visual inspection for multiple purposes. The measurement setup can be seen in Figure 1.

An integrated Zebris™ foot pressure measuring plate (5376 sensors, scanning fre-
quency 120 Hz, sensitivity 1 N/cm2, accuracy 5% FS) enables the analysis of ground
reaction forces.
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When beginning the analysis, all measuring devices start simultaneously, but due to
the different measuring frequencies this results in an unequal number of observation times.
This first needs to be reconciled in order to enable analysis of spinal motion directly related
to gait.
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Figure 1. Dynamic Surface Topography measuring setup. Participant walking on a treadmill with an
integrated foot pressure measuring plate while structured light is projected on the textile-free back.
System generates a 3D image of the surface and then calculates the corresponding 3D movements for
each spinal segment.

Therefore, the necessary data were obtained from an already existing normative
referent data pool [41]. The study was approved by the responsible ethics committee of
the medical chamber Rhineland-Palatinate (837.194.16) and is registered with WHO (INT:
DRKS00010834). All participants gave informed consent. For further information on the
ST measuring device, experimental procedures, or characteristics of participants, refer to
Huthwelker et al. (2022) [41].

Here, we provide detailed descriptions of the four central processes.

2.1. Encoding of Step and Swing Phases and Complete Gait Cycles into the Spinal Model

In our approach, we started to measure a gait cycle with the first full IC of the right
foot, which is also the start of encoding for the stance phase right. Hence, the start of the
next gait cycle is the next IC of the right foot and so forth. Both leg swing phases are also
marked in the data export. Along their assigned time stamp, the respective gait phases
were encoded and synchronized into the raw data of the spinal model. We introduced the
notion to the manufacturer DIERS. They implemented the concept in the software (DICAM
v3.7Beta). We validated the updated software by taking a random sample of 20 participants’
video recordings of the back and lateral axis cameras in which single frames were checked
for face-valid results compared to the automated detection. In all recordings, the visually
identified moment in time of IC was in the range of ±3 Frames/3/60 Hz compared to the
frame number in the exported raw data. For a detailed explanation of the notion, compare
the related repository [46]. Since all observed video recordings revealed valid results, the
next data step could be addressed.
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2.2. Assembly of Individual Measurement Export Files and Creation of Rotation Graphs

DICAM evaluates over one hundred global (e.g., lordosis and kyphosis angles) and
local (e.g., 3D position data of each vertebra) parameters of the spine that can be exported
as raw data in .CSV format. The exported data are separate for each measurement that was
chosen in the menu. Depending on the parameter choice, different columns are generated.
Based on the parameter settings, specific column distribution results are produced. A
Statistical Analysis System (SAS v9.4) syntax script assembles all single exports into one
complete raw data table [44]. Since not all characters in the DICAM export are compatible
with SAS, the script defines its own column headings and labels them accordingly. Con-
sequently, the parameter settings of DICAM are crucial; otherwise, wrong data would be
read in. Columns containing the subject’s code and the speed in km/h are imported based
on the filename of the former DICAM export. Now, all kinds of statistical analyses can be
applied to a full set of data.

The resulting complete raw data table can also be imported by Statistical Package for
the Social Sciences (SPSS v23). We used this to check data for plausibility and potential
outlying values and to generate oscillation graphs based on individual movement data
with a direct relation to the phases of gait. For the graphs, we used the position data of the
vertebra and the pelvis in the transversal plane. For the indication of gait cycles, we used
foot pressure measuring data indicating the phases of gait. A graph template, as well as
the respective SPSS script for execution, is openly provided [49].

2.3. Standardization Combining Raw Data of Three or More Gait Cycles for Interpolating Splines
and Creation of Rotational Graphs

We used an openly available SAS (v9.4) syntax script [44] to generate a standardized
gait cycle (SGC) for each measurement. By computing a standardized gait cycle on a
scale of 0–100%, measurements all differing in the number of observations are thus made
comparable. One SGC per measurement was generated out of three (all available) gait
cycles by using a spline function as part of the syntax. The resulting raw data table was
analyzed using SPSS to create rotational graphs of the spine now within an SGC. Therefore,
another graph template and the respective executing SPSS script were created and made
openly available [48]. It can be downloaded and used on its own measurement data from a
similar ST device after files have been exported.

3. Results
After visual inspection of all spinal rotation graphs of our 201 participants, we present

a selection of interesting cases and related motion analytical considerations in the following
subsection. The purpose is to provide an overview of typical findings and emerging
patterns as well as highlight rare cases. Each of these graphs (Figures 2–5) represents
the spinal motion of one of our participants across three gait cycles and the same subject
again (Figures 6–9) after computing an SGC. Therefore, we analyzed average walking
speeds of approximately 82–84 m per minute/5 km/h [12] as this speed provides data
for most habitual movement patterns. In addition, we limited visualizations of rotational
curves in the transverse plane as a first approach to make spinal motion visible. All
anonymized single graphs containing only the graph number, but not the subject code, and
an all-encompassing visualization are openly available [50].
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3.1. Raw Data Visualizations of Rotational Curves Directly Related to Phases Gait

The pelvis and the lumbar segments show an opposite progression in comparison
to the thoracic segments. The rotational direction changes gradually through each of the
segments. As expected, periodic near sinusoidal oscillations are seen, revealing a phase
shift between the pelvis and the upper thoracic segments with their maxima facing each
other, meaning a direct equalization of the pelvic rotation by the thoracic spine (Figure 2).
At IC right, the pelvis and L4 are maximally rotated to the left, reaching the zero point in
the middle of the stance phase. L4 constantly follows the rotation of the pelvis. T12 has a
fairly small amplitude, being close to the zero point where the intersection of movement
directions takes place. Maximum antagonistic rotation is displayed by T7 and T8. The
movement direction then changes again, with T4 also rotating in the opposite direction
of the pelvis but to a lesser extent. Along the gait cycle, the amplitude and the period are
intra-individually constant. Even though we see expected movement patterns, there are
also broad variations with specific manifestations for each individual (Figures 3–5).

After visual analysis of all individual cases, we made the following observations:
Graphs of rotation patterns are usually characterized by sinusoidal curve progression
(Figure 2). Rhythmic movements can superimpose these typical curves (Figure 3). They
can be assumed as individually characterizing features and not attributed to measuring
artifacts as they appear consistently throughout the whole spine and across all gait cycles.
In particular cases, potentially non-sinusoidal but still periodic curves, mostly with steep
rises, occur (Figure 3). Rarely, for instance, in the pelvis (Figure 3), very little movement
(<5◦) or even no systematic curve course could be detected. The measured values of
individual segments oscillate around a “stable level” but not necessarily around the zero
point. Frequently, this “symmetry line” (SL) of oscillation is shifted several degrees into
one of the two directions of movement (Figure 5); this “level shift” (LS) might depend
on the alignment during stance. During gait cycles, the amplitude and the period are
intra-individually constant (Figures 2–5) and behave relative to the stance phase for all
participants but in different ways, varying for each individual. The direction of movement
of the pelvis and the lower lumbar spine is usually opposite to that of the upper lumbar
and thoracic spine. However, in some cases, the pelvis and the majority of all segments
rotate in the same phase (Figure 4). Usually, the graphs of neighboring vertebral bodies
rotate nearly in phase but with differently prominent maximum and minimum segmental
motions. Maximum antagonistic rotation to the pelvis is mostly displayed by T8 (Figure 2).
The movement excursions of these two regions can be equally large, or they can differ
significantly. The “point of intersection” (PoI), the height of the segment where the two
directions of movement exchange, varies depending on the subject and can be between
the middle lumbar and lower thoracic spine. For the resulting phase shifts between these
“counterparts”, we found multiple patterns reaching from exact antagonistic 100% (180◦,
sine-to-sine), over 50% (90◦, sine-to-cosine) to 0% (0◦, oscillating in phase). Relative to the
stance phase of the right leg, the rotational maximum of the pelvis to the left predominately
occurs between IC and mid stance.

In order to make the described spinal motion analysis intra- and inter-individually
comparable, we had to standardize combined raw data of all gait cycles for interpolat-
ing splines.
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3.2. Standardization of Combining Raw Data of Three or More Gait Cycles for Interpolating
Splines and Creation of Rotational Graphs

After standardization, graphs combining raw data of all gait cycles can be created.
In order to demonstrate the effects of standardization and interpolation, subsequent fig-
ures take up their counterparts from the previous section. Comparing Figures 2 and 6,
vertebral bodies of the middle and lower thoracic spine during the first and third gait
cycle, previously presenting an asymmetrical curve progression, especially toward the
left (Figure 2), now show a symmetrical curve progression leading to a much more pre-
cise identification of maxima (Figure 6). In given contexts, where rhythmic movements
superimpose curve progressions, thereby constituting individually characterizing features
(Figure 3), the standardization, nevertheless, preserves them, meanwhile improving max-
ima identification (Figure 7). The standardization not only enables comparability but can
also clarify individual features. At first, Figure 4 reveals that the pelvis, lumbar spine, and
all thoracic segments are rotating nearly in phase, but after transformation in SGC, we see
that this must be subdivided so that the lumbar and middle thoracic spine rotate nearly in
phase while the upper thoracic spine displays hardly any movement (Figure 8). A similar
clarification of an individual feature occurs when comparing the LS to the right of the SL
before (Figure 5) and after standardization (Figure 9), when the isolated LS of the thoracic
spine and T12, being the PoI, is much easier to recognize. All single graphs within an SGC
and an all-encompassing video are openly available [47].
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4. Discussion
With the described methodologic advancements, ST can be used to visualize spinal

motion as it directly relates to phases of gait and, after standardization, to compare these
results intra- and inter-individually. As demonstrated, interpolating spline functions
work for average walking speed measurements, leading to a more precise determination
of relevant and characteristic points (e.g., maxima, phase shifts, lumbar and thoracic
movement behavior), thereby aiding in the clarification of individual features. Additionally,
this constitutes the basis for calculating phase shifts between different vertebral bodies as a
future parameter to describe patterns of spinal motion in gait.

Using this method, we observed high intra-individual consistency of movement
patterns as well as extensive inter-individual variation. When applying AI-based analysis,
e.g., a Siamese neural network architecture, we were already able to identify 100% of
individuals, thus constituting a spinal fingerprint [51]. This individuality of motion patterns
is similar to previous work [17,19]. What contradicts these former findings is that our
results detected regions (T6–T8) of many volunteers where they actually contained the
largest movement excursions [42], whereas previous work detected the least spinal motion.
Especially in regards to phase shift patterns of spinal segments, we detected subjects
where the majority of all segments rotated in the same phase. One would expect this
phenomenon while walking in amble. In this unusual pattern for humans, the ipsilateral
instead of the contralateral arm is advanced by the leg. This type of ambulation is normally
restricted to quadruped mammals, such as the elephant, but can also be examined by
primate species [52], although this finding requires further examination. Taken together,
our approach can directly relate segmental data to specific phases of gait and moments in
time for an SGC.

Regarding the interpretation of normative reference data of asymptomatic healthy
controls [42], the inter-individual variation due to differences in gait types, the alignment
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during stance [41,53], and other confounding factors must be determined. It is still un-
clear to which extent this would help to discern between physiological and pathological
movement patterns. Thus, a relevant goal of future research will be to identify movement
parameters and resulting characteristic patterns in which Artificial Intelligence-based anal-
ysis could be very helpful, as has been demonstrated for gait patterns [54]. As an example
of dynamic ST, longitudinal changes of similarity in subjects might be of interest for the
detection of early change, thereby supporting experts with an objective metric that might
be helpful when approaching pathologies [51]. In order to test these assumptions, we will
look for differences in spinal motion between the healthy controls and back pain patients,
as well as other musculoskeletal disorders, in separate projects.

Limitations arise from the methodology, as reliability, reproducibility, and intra-
individual consistency for the use in dynamic gait analysis have been shown [40,51], though
validity is only for dynamic stance measures [55]. Although the transfer from validated
stance measurements to dynamic gait analysis is feasible, there has not been validation of
the spinal model in dynamic ST measurements so far. Hence, dynamic ST represents 3D
spinal position data estimated from the back surface, which can be affected by contraction
of the back muscles or movements and deformations of the soft tissue. Therefore, we were
only able to apply internal validity measures to our results, e.g., the slightly displaced
but still parallel course of the pelvis and L4. Furthermore, we only measured three gait
cycles, and we need to investigate whether the inclusion of more than three gait cycles
would alter the reported results. Alternatively, local Fourier transformations could also
serve the same purpose in a superior way. Further research is needed to identify the most
appropriate method of gait analysis necessary for adequate assessments of slower speeds
in the setting of patients with back pain or hip/knee arthrosis where pathology inhibits
walking (reducing speed).

Comprehension of these relationships will facilitate future research to understand
the nature of pathologies, for example, back pain, arthrosis, scoliosis, and the effect of
orthopedic surgery on spinal motion for comparison between physiological and pathologi-
cal variations.

5. Conclusions
As the result of our methodologic advancement, ST now enables a face-valid and repro-

ducible description of estimated spinal motion in direct relation to gait without extensive
preparation procedures, significant radiation exposure, or other forms of invasive strategies.
The transformation into an SGC facilitates intra- and inter-individual comparisons while
preserving individual characteristic features. Hence, we conclude that this novel form
of gait-related spinal motion analysis appears to have several advantages over existing
methodology and holds much promise for future research in this field.

Regarding necessary future work and in order to address the lack of validity for
dynamic ST, we propose two approaches: As a direct validation of dynamic ST, when
compared to a gold standard, we suggest the application of 3D X-ray while walking on a
treadmill (e.g., EOS). As a clinical challenge for dynamic ST, in order to provide even more
face validity, a research project could evaluate the potential of ST to detect spinal fusions.

Nevertheless, before dynamic ST has been validated with a gold-standard measure-
ment, crucial clinical decisions should not solely rely on its results.
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